Validation of the potentials#

Once we have the fitted potentials, it is necessary to validate them in order to assess their quality with respect to applications.

In this exercise, we use the fitted potentials and perform some basic calculations.

Import the fitted potentials for Li-Al (from earlier excercise)#

The same directory contains a helper.py file which among other things, also contains the necessary specifications of each of the potentials that we will use today. Individual potentials are descrbed in the LAMMPS format as:

pot_eam = pd.DataFrame({
    'Name': ['LiAl_eam'],
    'Filename': [["../potentials/AlLi.eam.fs")]],
    'Model': ["EAM"],
    'Species': [['Li', 'Al']],
    'Config': [['pair_style eam/fs\n', 'pair_coeff * * AlLi.eam.fs Li Al\n']]
})

A list of such DataFrames describing the potentials is saved in a list called potentials_list. We import the list as:

from helper import potentials_list

# potentials_list = [potentials_list[0],potentials_list[1]]

# display the first element in the list
# which is an EAM potential
potentials_list[2]
Name Filename Model Species Config
0 LiAl_yace [/home/jovyan/workshop_preparation/potentials/... ACE [Al, Li] [pair_style pace\n, pair_coeff * * AlLi-6gen-1...

Import other important modules#

import numpy as np
import matplotlib.pylab as plt
import seaborn as sns
import pandas as pd
import time

from helper import get_clean_project_name

from pyiron_atomistics import Project
from pyiron import pyiron_to_ase
import pyiron_gpl

# save start time to record runtime of the notebook
time_start =  time.time()
time_start
1654697715.1585205

Create a new project to perform validation calculations#

It is useful to create a new project directory for every kind of calculation. Pyiron will automatically create subdirectories for each potential and property we calculate.

pr = Project("validation_LiAl")

# remove earlier jobs
# pr.remove_jobs(silently=True, recursive=True)

Define the important pases to consider for validation#

We construct a python dictionary struct_dict which contains a description of all the important phases that we want to consider for this exercise. The descriptions given in the dictionary will be later used by Pyiron to generate or read the structural configurations for the respective phases.

For unary phases, we provide an initial guess for the lattice parameter and use pyiron to generate the structural prototype.

For binary phases, we provide a phase name and an additional dictionary fl_dict which maps the phase name to a .cif file saved in a subdirectory. Pyiron will use this information to read the respective configurations from the file.

struct_dict = dict()

# structures to be generated automatically
struct_dict["Al"] = dict()
struct_dict["Al"]["s_murn"] = ["fcc","bcc"]
struct_dict["Al"]["a"] = 4.04

struct_dict["Li"] = dict()
struct_dict["Li"]["s_murn"] = ["bcc","fcc"]
struct_dict["Li"]["a"] = 3.5


# structures to be read from file
struct_dict["Li2Al2"] = dict()
struct_dict["Li2Al2"]["s_murn"] = ["Li2Al2_cubic"]

struct_dict["LiAl3"] = dict()
struct_dict["LiAl3"]["s_murn"] = ["LiAl3_tetragonal"]

struct_dict["LiAl3"] = dict()
struct_dict["LiAl3"]["s_murn"] = ["LiAl3_cubic"]

struct_dict["Li9Al4"] = dict()
struct_dict["Li9Al4"]["s_murn"] = ["Li9Al4_monoclinic"]

struct_dict["Li3Al2"] = dict()
struct_dict["Li3Al2"]["s_murn"] = ["Li3Al2_trigonal"]

struct_dict["Li4Al4"] = dict()
struct_dict["Li4Al4"]["s_murn"] = ["Li4Al4_cubic"]

struct_dict
{'Al': {'s_murn': ['fcc', 'bcc'], 'a': 4.04},
 'Li': {'s_murn': ['bcc', 'fcc'], 'a': 3.5},
 'Li2Al2': {'s_murn': ['Li2Al2_cubic']},
 'LiAl3': {'s_murn': ['LiAl3_cubic']},
 'Li9Al4': {'s_murn': ['Li9Al4_monoclinic']},
 'Li3Al2': {'s_murn': ['Li3Al2_trigonal']},
 'Li4Al4': {'s_murn': ['Li4Al4_cubic']}}

a dictionary is described to map the binary phases to their file locations

fl_dict = {"Li2Al2_cubic": "mp_structures/LiAl_mp-1067_primitive.cif",
           "LiAl3_tetragonal":"mp_structures/LiAl3_mp-975906_primitive.cif",
           "LiAl3_cubic":"mp_structures/LiAl3_mp-10890_primitive.cif",
           "Li9Al4_monoclinic":"mp_structures/Li9Al4_mp-568404_primitive.cif",
           "Li3Al2_trigonal":"mp_structures/Al2Li3-6021.cif",
           "Li4Al4_cubic":"mp_structures/LiAl_mp-1079240_primitive.cif"}

Visualize the strucs#

Once the structures are defined in the pyiron format, we can view their atomic coordinates and cell vectors using struc.plot3d()

# Option 1: use `ase.build.bulk` functionality in pyiron
struc = pr.create_ase_bulk("Al", "fcc", a=4.04,cubic=True)

# struc.plot3d()
# Option 2: Read from a file
struc = pr.create.structure.ase.read(fl_dict["Li4Al4_cubic"])

# struc.plot3d()

(a) Ground state: E-V curves#

Using a series of nested for loops, we calculate the murnaghan EV-curves using all three potentials for all the defined structures.

We loop over:

  • All the potentials defined in potentials_list and name the project according to the potential

    • All the chemical formulae defined in the keys of struct_dict

      • All phases defined for a given chemical formula

Within the loops, the first step is to get the structure basis on which we will perform the calculations.

  • For unary phases, we use the pyiron function pr_pot.create_ase_bulk(compound, crys_structure, a=compound_dict["a"])

  • For binary structures, we read the basis using pr.create.structure.ase.read(fl_path) with the fl_path given by fl_dict defined earlier.

Once the structure and potential is defined as part of the pr_job, we run two calculations:

  • job_relax to relax the structure to the ground state

  • murn_job to calculate the energies in a small volume range around the equilibrium

As the calculations are being performed, the status(s) of each calculation is printed. If a job is already calculated, the calculations are not re-run but rather re-read from the saved data.

for pot in potentials_list:
    with pr.open(get_clean_project_name(pot)) as pr_pot:
        print(pr_pot)
        for compound, compound_dict in struct_dict.items():
            for crys_structure in compound_dict["s_murn"]:
                
                # Relax structure
                if crys_structure in ["fcc","bcc"]:
                    basis = pr_pot.create_ase_bulk(compound, crys_structure, a=compound_dict["a"])
                else:
                    basis = pr_pot.create.structure.ase.read(fl_dict[crys_structure])
                    
                job_relax = pr_pot.create_job(pr_pot.job_type.Lammps, f"{compound}_{crys_structure}_relax", delete_existing_job=True)

                job_relax.structure = basis
                job_relax.potential = pot
                job_relax.calc_minimize(pressure=0)
                job_relax.run()
                
                # Murnaghan
                job_ref = pr_pot.create_job(pr_pot.job_type.Lammps, f"ref_job_{compound}_{crys_structure}")
                job_ref.structure = job_relax.get_structure(-1)
                job_ref.potential = pot
                job_ref.calc_minimize()
                
                murn_job = job_ref.create_job(pr_pot.job_type.Murnaghan, f"murn_job_{compound}_{crys_structure}")
                murn_job.input["vol_range"] = 0.1
                murn_job.run()
/home/jovyan/workshop_preparation/validation/validation_LiAl/LiAl_eam/
The job Al_fcc_relax was saved and received the ID: 1752
2022-06-08 14:15:16,704 - pyiron_log - WARNING - The job murn_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Al_bcc_relax was saved and received the ID: 1753
2022-06-08 14:15:18,339 - pyiron_log - WARNING - The job murn_job_Al_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li_bcc_relax was saved and received the ID: 1754
2022-06-08 14:15:19,051 - pyiron_log - WARNING - The job murn_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li_fcc_relax was saved and received the ID: 1755
2022-06-08 14:15:20,323 - pyiron_log - WARNING - The job murn_job_Li_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li2Al2_Li2Al2_cubic_relax was saved and received the ID: 1756
2022-06-08 14:15:22,012 - pyiron_log - WARNING - The job murn_job_Li2Al2_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job LiAl3_LiAl3_cubic_relax was saved and received the ID: 1757
2022-06-08 14:15:23,393 - pyiron_log - WARNING - The job murn_job_LiAl3_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li9Al4_Li9Al4_monoclinic_relax was saved and received the ID: 1758
2022-06-08 14:15:24,515 - pyiron_log - WARNING - The job murn_job_Li9Al4_Li9Al4_monoclinic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li3Al2_Li3Al2_trigonal_relax was saved and received the ID: 1759
2022-06-08 14:15:25,720 - pyiron_log - WARNING - The job murn_job_Li3Al2_Li3Al2_trigonal is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li4Al4_Li4Al4_cubic_relax was saved and received the ID: 1760
2022-06-08 14:15:27,012 - pyiron_log - WARNING - The job murn_job_Li4Al4_Li4Al4_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
/home/jovyan/workshop_preparation/validation/validation_LiAl/RuNNer-AlLi/
The job Al_fcc_relax was saved and received the ID: 1761
2022-06-08 14:15:27,799 - pyiron_log - WARNING - The job murn_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Al_bcc_relax was saved and received the ID: 1762
2022-06-08 14:15:28,779 - pyiron_log - WARNING - The job murn_job_Al_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li_bcc_relax was saved and received the ID: 1763
2022-06-08 14:15:29,535 - pyiron_log - WARNING - The job murn_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li_fcc_relax was saved and received the ID: 1764
2022-06-08 14:15:30,637 - pyiron_log - WARNING - The job murn_job_Li_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li2Al2_Li2Al2_cubic_relax was saved and received the ID: 1765
2022-06-08 14:15:32,209 - pyiron_log - WARNING - The job murn_job_Li2Al2_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job LiAl3_LiAl3_cubic_relax was saved and received the ID: 1766
2022-06-08 14:15:33,439 - pyiron_log - WARNING - The job murn_job_LiAl3_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li9Al4_Li9Al4_monoclinic_relax was saved and received the ID: 1767
2022-06-08 14:15:34,543 - pyiron_log - WARNING - The job murn_job_Li9Al4_Li9Al4_monoclinic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li3Al2_Li3Al2_trigonal_relax was saved and received the ID: 1768
2022-06-08 14:15:35,739 - pyiron_log - WARNING - The job murn_job_Li3Al2_Li3Al2_trigonal is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li4Al4_Li4Al4_cubic_relax was saved and received the ID: 1769
2022-06-08 14:15:36,881 - pyiron_log - WARNING - The job murn_job_Li4Al4_Li4Al4_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
/home/jovyan/workshop_preparation/validation/validation_LiAl/LiAl_yace/
The job Al_fcc_relax was saved and received the ID: 1770
2022-06-08 14:15:38,178 - pyiron_log - WARNING - The job murn_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Al_bcc_relax was saved and received the ID: 1771
2022-06-08 14:15:39,859 - pyiron_log - WARNING - The job murn_job_Al_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li_bcc_relax was saved and received the ID: 1772
2022-06-08 14:15:41,447 - pyiron_log - WARNING - The job murn_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li_fcc_relax was saved and received the ID: 1773
2022-06-08 14:15:42,997 - pyiron_log - WARNING - The job murn_job_Li_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li2Al2_Li2Al2_cubic_relax was saved and received the ID: 1774
2022-06-08 14:15:44,100 - pyiron_log - WARNING - The job murn_job_Li2Al2_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job LiAl3_LiAl3_cubic_relax was saved and received the ID: 1775
2022-06-08 14:15:45,161 - pyiron_log - WARNING - The job murn_job_LiAl3_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li9Al4_Li9Al4_monoclinic_relax was saved and received the ID: 1776
2022-06-08 14:15:46,678 - pyiron_log - WARNING - The job murn_job_Li9Al4_Li9Al4_monoclinic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li3Al2_Li3Al2_trigonal_relax was saved and received the ID: 1777
2022-06-08 14:15:48,152 - pyiron_log - WARNING - The job murn_job_Li3Al2_Li3Al2_trigonal is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
The job Li4Al4_Li4Al4_cubic_relax was saved and received the ID: 1778
2022-06-08 14:15:49,387 - pyiron_log - WARNING - The job murn_job_Li4Al4_Li4Al4_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'

One can display the technical details of all submitted jobs using pr.job_table() below.

# pr.job_table()

In order to get read useful results from the completed calculations (eq_energy, eq_volume, etc), it is useful to define the following functions

# Only work with Murnaghan jobs
def get_only_murn(job_table):
    return (job_table.hamilton == "Murnaghan") & (job_table.status == "finished") 

def get_eq_vol(job_path):
    return job_path["output/equilibrium_volume"]

def get_eq_lp(job_path):
    return np.linalg.norm(job_path["output/structure/cell/cell"][0]) * np.sqrt(2)

def get_eq_bm(job_path):
    return job_path["output/equilibrium_bulk_modulus"]

def get_potential(job_path):
    return job_path.project.path.split("/")[-3]

def get_eq_energy(job_path):
    return job_path["output/equilibrium_energy"]

def get_n_atoms(job_path):
    return len(job_path["output/structure/positions"])

def get_ase_atoms(job_path):
    return pyiron_to_ase(job_path.structure).copy()


def get_potential(job_path):
    return job_path.project.path.split("/")[-2]

def get_crystal_structure(job_path):
    return job_path.job_name.split("_")[-1]

def get_compound(job_path):
    return job_path.job_name.split("_")[-2]

Using the functions defined above, one can now define a pd.DataFrame containing all useful results

# Compile data using pyiron tables
table = pr.create_table("table_murn", delete_existing_job=True)
table.convert_to_object = True
table.db_filter_function = get_only_murn
table.add["potential"] = get_potential
table.add["ase_atoms"] = get_ase_atoms
table.add["compound"] = get_compound
table.add["crystal_structure"] = get_crystal_structure
table.add["a"] = get_eq_lp
table.add["eq_vol"] = get_eq_vol
table.add["eq_bm"] = get_eq_bm
table.add["eq_energy"] = get_eq_energy
table.add["n_atoms"] = get_n_atoms
table.run()

data_murn = table.get_dataframe()
data_murn["phase"] = data_murn.compound + "_" + data_murn.crystal_structure
data_murn
The job table_murn was saved and received the ID: 1779
/srv/conda/envs/notebook/lib/python3.8/site-packages/pyiron_base/table/datamining.py:620: PerformanceWarning: 
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block2_values] [items->Index(['potential', 'ase_atoms', 'compound', 'crystal_structure'], dtype='object')]

  self.pyiron_table._df.to_hdf(
job_id potential ase_atoms compound crystal_structure a eq_vol eq_bm eq_energy n_atoms phase
0 1140 LiAl_eam (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.039967 16.495612 85.876912 -3.483097 1 Al_fcc
1 1153 LiAl_eam (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al bcc 3.898853 16.147864 48.620841 -3.415312 1 Al_bcc
2 1166 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.195477 20.114514 13.690609 -1.757011 1 Li_bcc
3 1179 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li fcc 4.253841 19.241330 13.985972 -1.758107 1 Li_fcc
4 1192 LiAl_eam (Atom('Li', [4.359978178265943, 2.5172345748814795, 1.7799536377360747], index=0), Atom('Li', [6.53996726740165, 3.775851862320358, 2.669930456604317], index=1), Atom('Al', [-3.964456982410852e-12... Li2Al2 cubic 6.165940 58.604895 100.347240 -11.074362 4 Li2Al2_cubic
5 1205 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [1.9825515172760235, 1.9825515172760237, 2.427925369776811e-16], index=1), Atom('Al', [1.9825515172760235, 1.2139626848884054e-16, 1.9825515172760... LiAl3 cubic 5.607502 62.227580 51.472656 -12.774590 4 LiAl3_cubic
6 1218 LiAl_eam (Atom('Li', [4.9874611628416465, 1.0099045365192156, 0.8188840806477526], index=0), Atom('Li', [3.1237816780987666, 1.455730745331952, 2.673723152073369], index=1), Atom('Li', [-3.4421956688209843... Li9Al4 monoclinic 13.023701 190.504374 53.125276 -28.970054 13 Li9Al4_monoclinic
7 1231 LiAl_eam (Atom('Al', [2.1548001975659234, 1.244075358781918, 1.861784175000869], index=0), Atom('Al', [-2.154798282819334, 3.732223313213554, 2.6646760238080542], index=1), Atom('Li', [8.560563403365654e-0... Li3Al2 trigonal 6.094693 72.810229 69.231669 -12.413856 5 Li3Al2_trigonal
8 1244 LiAl_eam (Atom('Li', [2.142967147985671, 1.2372426587287435, 7.662120717536293], index=0), Atom('Li', [-8.783761113500244e-10, 2.4744853189563414, 0.5913679335098909], index=1), Atom('Li', [-8.783761113500... Li4Al4 cubic 6.061226 131.389799 71.221355 -20.506570 8 Li4Al4_cubic
9 1257 RuNNer-AlLi (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.025259 16.355737 76.669339 -3.484016 1 Al_fcc
10 1270 RuNNer-AlLi (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al bcc 3.958447 16.870137 51.052272 -3.432183 1 Al_bcc
11 1283 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.211118 20.286595 8.517306 -1.755918 1 Li_bcc
12 1296 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li fcc 3.967043 15.678901 147.215464 -1.769260 1 Li_fcc
13 1309 RuNNer-AlLi (Atom('Li', [4.509081801264686, 2.603319591757272, 1.8408249369278522], index=0), Atom('Li', [6.763622701898693, 3.90497938763465, 2.7612374053913604], index=1), Atom('Al', [-3.844724064520768e-12... Li2Al2 cubic 6.376805 64.816143 57.934650 -11.212634 4 Li2Al2_cubic
14 1322 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [2.0154153406879987, 2.0154153406879987, 2.46817194592603e-16], index=1), Atom('Al', [2.0154153406879987, 1.234085972963015e-16, 2.015415340687998... LiAl3 cubic 5.700455 65.403086 59.308440 -12.574696 4 LiAl3_cubic
15 1335 RuNNer-AlLi (Atom('Li', [5.206051477294367, 1.0619663179427192, 0.8311820920214751], index=0), Atom('Li', [3.28638171437237, 1.5211864250363467, 2.7226207058417775], index=1), Atom('Li', [-3.6198784902055765,... Li9Al4 monoclinic 13.640614 218.932018 33.874957 -31.820765 13 Li9Al4_monoclinic
16 1348 RuNNer-AlLi (Atom('Al', [2.2338755345732753, 1.289729472183878, 1.9126243306628208], index=0), Atom('Al', [-2.233873547699001, 3.869185551846968, 2.7799443936883206], index=1), Atom('Li', [9.007133262260959e-... Li3Al2 trigonal 6.318351 81.143544 44.574696 -13.185198 5 Li3Al2_trigonal
17 1361 RuNNer-AlLi (Atom('Li', [2.220260976080854, 1.2818682724036983, 7.872085429446316], index=0), Atom('Li', [1.722758777253687e-10, 2.5637365444716322, 0.6790950189344616], index=1), Atom('Li', [1.72275877725368... Li4Al4 cubic 6.279846 146.014891 37.664442 -21.680919 8 Li4Al4_cubic
18 1393 LiAl_yace (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.044553 16.541594 87.130427 -3.478909 1 Al_fcc
19 1406 LiAl_yace (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al bcc 3.953036 16.811334 72.667242 -3.388831 1 Al_bcc
20 1419 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.216389 20.403222 15.823747 -1.756104 1 Li_bcc
21 1435 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li fcc 4.331457 20.318983 14.231625 -1.755594 1 Li_fcc
22 1451 LiAl_yace (Atom('Li', [4.5021943685456485, 2.599343130623782, 1.8380131542949232], index=0), Atom('Li', [6.753291552821257, 3.8990146959337566, 2.7570197314419675], index=1), Atom('Al', [-3.838851410290508e... Li2Al2 cubic 6.367064 64.521799 46.107162 -11.185880 4 Li2Al2_cubic
23 1464 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [2.0106543994993293, 2.0106543994993293, 2.462341474538397e-16], index=1), Atom('Al', [2.0106543994993293, 1.2311707372691985e-16, 2.0106543994993... LiAl3 cubic 5.686989 65.028366 66.254925 -12.569153 4 LiAl3_cubic
24 1480 LiAl_yace (Atom('Li', [5.141009159558869, 1.0571139195527752, 0.820249453790277], index=0), Atom('Li', [3.2705789348169056, 1.5045550288016276, 2.715159327393234], index=1), Atom('Li', [-3.601125467999465, ... Li9Al4 monoclinic 13.519944 213.136118 33.963240 -31.796316 13 Li9Al4_monoclinic
25 1493 LiAl_yace (Atom('Al', [2.2270976540671734, 1.2858164055924044, 1.9025646270076813], index=0), Atom('Al', [-2.227095628822777, 3.8574462424884515, 2.7757665665986657], index=1), Atom('Li', [8.407589514518869... Li3Al2 trigonal 6.299181 80.375104 39.643133 -13.138303 5 Li3Al2_trigonal
26 1506 LiAl_yace (Atom('Li', [2.2269869888586107, 1.285751535686306, 7.864026721150146], index=0), Atom('Li', [-1.5554058443124377e-09, 2.571503074062492, 0.7130584901440213], index=1), Atom('Li', [-1.555405844312... Li4Al4 cubic 6.298870 147.356944 46.701117 -21.607231 8 Li4Al4_cubic
df_dft_ref = pd.read_pickle("dft_ref.pckl")

al_fcc = df_dft_ref[df_dft_ref["compound"]=="Al_fcc"]
li = df_dft_ref[df_dft_ref["compound"].isin(["Li_bcc","Li_fcc"])]
df_mixed = df_dft_ref[df_dft_ref["compound"].isin(["LiAl_mp-1067","LiAl3_mp-10890","Li9Al4_mp-568404","Li3Al2_mp-16506","LiAl_mp-1079240"])]

li["energy_per_atom"] = li["energy"]/li["number_of_atoms"]
# li
fig, ax_list = plt.subplots(ncols=3, nrows=len(potentials_list), sharex="col")

fig.set_figwidth(24)
fig.set_figheight(20)

color_palette = sns.color_palette("tab10", n_colors=len(data_murn.phase.unique()))


for i, pot in enumerate(potentials_list):
    
    
    mask1 = data_murn["compound"]=="Al"
    data1 = data_murn[(data_murn.potential == get_clean_project_name(pot)) & (mask1)]
    
    mask2 = data_murn["compound"]=="Li"
    data2 = data_murn[(data_murn.potential == get_clean_project_name(pot)) & (mask2)]
    
    mask3 = data_murn["compound"].isin(["Al","Li"])
    data3 = data_murn[(data_murn.potential == get_clean_project_name(pot)) & (~mask3)]

    for j,(_, row) in enumerate(data1.iterrows()):
        murn_job = pr.load(row["job_id"])
        murn_df = murn_job.output_to_pandas()
        n_atoms = row["n_atoms"]

        ax_list[i,0].plot(murn_df["volume"]/n_atoms, murn_df["energy"]/n_atoms,"-",
                            lw=4,
                            label= row["phase"], 
                            color=color_palette[j])
        
        
        
        ax_list[i,0].set_title(f"{get_clean_project_name(pot)}" + '_' + data1.iloc[0]["compound"],fontsize=22)
        ax_list[i,0].legend(prop={"size":16})
        
    ax_list[i,0].scatter(al_fcc["vol"],al_fcc["energy"]/al_fcc["number_of_atoms"],
                            facecolor="none",edgecolor="k",s=100,label="DFT")
        
    for j,(_, row) in enumerate(data2.iterrows()):
        murn_job = pr.load(row["job_id"])
        murn_df = murn_job.output_to_pandas()
        n_atoms = row["n_atoms"]
        
        ax_list[i,2].plot(murn_df["volume"]/n_atoms, murn_df["energy"]/n_atoms,"-",
                            lw=4,
                            label= row["phase"], 
                            color=color_palette[j])
        
        
        
        ax_list[i,2].set_title(f"{get_clean_project_name(pot)}" + '_' + data2.iloc[0]["compound"],fontsize=22)
        # ax_list[i,2].legend(prop={"size":16})
        
    ax_list[i,2].scatter(li["vol"],li["energy"]/li["number_of_atoms"],
                            facecolor="none",edgecolor="k",s=100,label="DFT")
        
    for j,(_, row) in enumerate(data3.iterrows()):
        murn_job = pr.load(row["job_id"])
        murn_df = murn_job.output_to_pandas()
        n_atoms = row["n_atoms"]
        
        ax_list[i,1].plot(murn_df["volume"]/n_atoms, murn_df["energy"]/n_atoms,"-",
                            lw=4,
                            label= row["phase"], 
                            color=color_palette[j])
        
        ax_list[i,1].set_title(f"{get_clean_project_name(pot)}" + '_AlLi_mixed',fontsize=22)
        # ax_list[i,1].legend(prop={"size":16})
        
    ax_list[i,1].scatter(df_mixed["vol"],df_mixed["energy"]/df_mixed["number_of_atoms"],
                            facecolor="none",edgecolor="k",s=100,label="DFT")
        
        
for i in range(3):
    ax_list[0,i].legend(prop={"size":16})
    ax_list[-1,i].set_xlabel("Volume per atom, $\mathrm{\AA^3}$",fontsize=20)
    ax_list[-1,i].tick_params(axis="x",labelsize=18)
    
for i in range(len(potentials_list)):
    ax_list[i,0].set_ylabel("Energy per atom, eV/atom",fontsize=18)
    
    
    
# ax.legend(prop={"size":16})
# ax.set_ylabel("Energy per atom, eV/atom",fontsize=20)
#break
fig.subplots_adjust(wspace=0.1);
../_images/validation_LiAl_23_0.png

(b) Elastic constants and Phonons#

Pyiron also has job modules to calculate elastic constants and thermal properties using the quasi-harmonic approximation given by the phonopy package.

As in the previous task, we again loop over the defined potentials and then over the given structures.

Calculating elastic constants and thermal properties is considerably more expensive than calculating EV curves. Hence, it is useful to only calculate these properties for a subset of most important structures

list_of_phases = ["Al_fcc","Li_bcc","Li2Al2_cubic","LiAl3_cubic"]

subset_murn = data_murn[data_murn["phase"].isin(list_of_phases)]
subset_murn
job_id potential ase_atoms compound crystal_structure a eq_vol eq_bm eq_energy n_atoms phase
0 1140 LiAl_eam (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.039967 16.495612 85.876912 -3.483097 1 Al_fcc
2 1166 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.195477 20.114514 13.690609 -1.757011 1 Li_bcc
4 1192 LiAl_eam (Atom('Li', [4.359978178265943, 2.5172345748814795, 1.7799536377360747], index=0), Atom('Li', [6.53996726740165, 3.775851862320358, 2.669930456604317], index=1), Atom('Al', [-3.964456982410852e-12... Li2Al2 cubic 6.165940 58.604895 100.347240 -11.074362 4 Li2Al2_cubic
5 1205 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [1.9825515172760235, 1.9825515172760237, 2.427925369776811e-16], index=1), Atom('Al', [1.9825515172760235, 1.2139626848884054e-16, 1.9825515172760... LiAl3 cubic 5.607502 62.227580 51.472656 -12.774590 4 LiAl3_cubic
9 1257 RuNNer-AlLi (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.025259 16.355737 76.669339 -3.484016 1 Al_fcc
11 1283 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.211118 20.286595 8.517306 -1.755918 1 Li_bcc
13 1309 RuNNer-AlLi (Atom('Li', [4.509081801264686, 2.603319591757272, 1.8408249369278522], index=0), Atom('Li', [6.763622701898693, 3.90497938763465, 2.7612374053913604], index=1), Atom('Al', [-3.844724064520768e-12... Li2Al2 cubic 6.376805 64.816143 57.934650 -11.212634 4 Li2Al2_cubic
14 1322 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [2.0154153406879987, 2.0154153406879987, 2.46817194592603e-16], index=1), Atom('Al', [2.0154153406879987, 1.234085972963015e-16, 2.015415340687998... LiAl3 cubic 5.700455 65.403086 59.308440 -12.574696 4 LiAl3_cubic
18 1393 LiAl_yace (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.044553 16.541594 87.130427 -3.478909 1 Al_fcc
20 1419 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.216389 20.403222 15.823747 -1.756104 1 Li_bcc
22 1451 LiAl_yace (Atom('Li', [4.5021943685456485, 2.599343130623782, 1.8380131542949232], index=0), Atom('Li', [6.753291552821257, 3.8990146959337566, 2.7570197314419675], index=1), Atom('Al', [-3.838851410290508e... Li2Al2 cubic 6.367064 64.521799 46.107162 -11.185880 4 Li2Al2_cubic
23 1464 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [2.0106543994993293, 2.0106543994993293, 2.462341474538397e-16], index=1), Atom('Al', [2.0106543994993293, 1.2311707372691985e-16, 2.0106543994993... LiAl3 cubic 5.686989 65.028366 66.254925 -12.569153 4 LiAl3_cubic
for pot in potentials_list:
    group_name = get_clean_project_name(pot)
    pr_pot = pr.create_group(group_name)
    print(group_name)
    
    for _, row in subset_murn[subset_murn.potential==group_name].iterrows():
        job_id = row["job_id"]
        
        job_ref = pr_pot.create_job(pr_pot.job_type.Lammps, f"ref_job_{row.compound}_{row.crystal_structure}")
        ref = pr_pot.load(job_id)
        job_ref.structure = ref.structure
        job_ref.potential = pot
        job_ref.calc_minimize()
        
        elastic_job = job_ref.create_job(pr_pot.job_type.ElasticMatrixJob, f"elastic_job_{row.compound}_{row.crystal_structure}")
        elastic_job.input["eps_range"] = 0.05
        elastic_job.run()
        
        
        phonopy_job = job_ref.create_job(pr_pot.job_type.PhonopyJob, f"phonopy_job_{row.compound}_{row.crystal_structure}")
        job_ref.calc_static()
        phonopy_job.run()
LiAl_eam
2022-06-08 14:17:48,273 - pyiron_log - WARNING - The job elastic_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:48,454 - pyiron_log - WARNING - The job phonopy_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:48,754 - pyiron_log - WARNING - The job elastic_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:48,922 - pyiron_log - WARNING - The job phonopy_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:49,223 - pyiron_log - WARNING - The job elastic_job_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:49,398 - pyiron_log - WARNING - The job phonopy_job_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:49,706 - pyiron_log - WARNING - The job elastic_job_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:49,875 - pyiron_log - WARNING - The job phonopy_job_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
RuNNer-AlLi
2022-06-08 14:17:50,177 - pyiron_log - WARNING - The job elastic_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:50,342 - pyiron_log - WARNING - The job phonopy_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:50,639 - pyiron_log - WARNING - The job elastic_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:50,802 - pyiron_log - WARNING - The job phonopy_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:51,099 - pyiron_log - WARNING - The job elastic_job_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:51,271 - pyiron_log - WARNING - The job phonopy_job_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:51,581 - pyiron_log - WARNING - The job elastic_job_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:51,752 - pyiron_log - WARNING - The job phonopy_job_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
LiAl_yace
2022-06-08 14:17:52,054 - pyiron_log - WARNING - The job elastic_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:52,218 - pyiron_log - WARNING - The job phonopy_job_Al_fcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:52,515 - pyiron_log - WARNING - The job elastic_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:52,680 - pyiron_log - WARNING - The job phonopy_job_Li_bcc is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:52,983 - pyiron_log - WARNING - The job elastic_job_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:53,159 - pyiron_log - WARNING - The job phonopy_job_Li2Al2_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:53,468 - pyiron_log - WARNING - The job elastic_job_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
2022-06-08 14:17:53,638 - pyiron_log - WARNING - The job phonopy_job_LiAl3_cubic is being loaded instead of running. To re-run use the argument 'delete_existing_job=True in create_job'
def filter_elastic(job_table):
    return (job_table.hamilton == "ElasticMatrixJob") & (job_table.status == "finished")

# Get corresponding elastic constants
def get_c11(job_path):
    return job_path["output/elasticmatrix"]["C"][0, 0]

def get_c12(job_path):
    return job_path["output/elasticmatrix"]["C"][0, 1]

def get_c44(job_path):
    return job_path["output/elasticmatrix"]["C"][3, 3]
table = pr.create_table("table_elastic", delete_existing_job=True)
table.db_filter_function = filter_elastic
table.add["potential"] = get_potential
table.add["C11"] = get_c11
table.add["C12"] = get_c12
table.add["C44"] = get_c44
table.add["compound"] = get_compound
table.add["crystal_structure"] = get_crystal_structure

table.run()
data_elastic = table.get_dataframe()
data_elastic["phase"] = data_elastic.compound + "_" + data_elastic.crystal_structure
data_elastic = data_elastic[data_elastic["phase"].isin(list_of_phases)]
data_elastic
The job table_elastic was saved and received the ID: 1780
job_id potential C11 C12 C44 compound crystal_structure phase
0 1524 LiAl_eam 120.339279 66.483631 45.515458 Al fcc Al_fcc
1 1540 LiAl_eam 16.740018 11.018163 12.688217 Li bcc Li_bcc
2 1556 LiAl_eam 179.464635 54.231219 47.889040 Li2Al2 cubic Li2Al2_cubic
3 1573 LiAl_eam 65.443987 47.601166 28.002138 LiAl3 cubic LiAl3_cubic
4 1590 RuNNer-AlLi 119.613688 59.261331 57.671025 Al fcc Al_fcc
5 1606 RuNNer-AlLi 13.974565 4.476591 13.293350 Li bcc Li_bcc
6 1622 RuNNer-AlLi 124.404880 20.665379 42.673693 Li2Al2 cubic Li2Al2_cubic
7 1639 RuNNer-AlLi 88.575923 50.190830 48.202184 LiAl3 cubic LiAl3_cubic
8 1685 LiAl_yace 133.807535 62.693651 40.423203 Al fcc Al_fcc
9 1701 LiAl_yace 18.307762 13.775557 12.106574 Li bcc Li_bcc
10 1717 LiAl_yace 114.275413 13.925574 42.537995 Li2Al2 cubic Li2Al2_cubic
11 1734 LiAl_yace 112.037951 42.770574 45.206508 LiAl3 cubic LiAl3_cubic
fig, ax_list = plt.subplots(ncols=len(data_elastic.phase.unique()), nrows=1,)

fig.set_figwidth(26)
fig.set_figheight(8)

color_palette = sns.color_palette("tab10", n_colors=len(data_elastic.potential.unique()))

pot = "LiAl_yace"


for i, phase in enumerate(data_elastic.phase.unique()):
    
    ax = ax_list[i]
    # data = data_elastic[(data_elastic.phase == phase) & (data_elastic["potential"]=="pot")]
    data = data_elastic[(data_elastic.phase == phase)]
    
    # DFT data is read from csv files
    dft_ref = pd.read_csv(phase.lower()+"_dos.csv")
    
    
    for j, pot in enumerate(potentials_list):
        
        phonopy_job = pr[get_clean_project_name(pot) + f"/phonopy_job_{phase}"]
    
        thermo = phonopy_job.get_thermal_properties(t_min=0, t_max=800)
        
        
        
        ax.plot(phonopy_job["output/dos_energies"], phonopy_job["output/dos_total"], 
                lw=4,
                color=color_palette[j], 
                label=get_clean_project_name(pot))
        
       
        
        ax.set_xlabel("Frequency, THz",fontsize=22)
        
    ax.plot(dft_ref["dos_energy"],dft_ref["dos_total"],ls="--",lw=3,color="k",label="DFT")
        
    ax.set_title(f"{phase}",fontsize=22)
    ax.tick_params(labelsize=16)
ax_list[0].set_ylabel("DOS",fontsize=22)

ax_list[0].legend(prop={"size":16})
fig.subplots_adjust(wspace=0.1);
../_images/validation_LiAl_29_0.png
# fig, ax_list = plt.subplots(ncols=len(data_elastic.phase.unique()), nrows=len(potentials_list), sharey="row")

# fig.set_figwidth(25)
# fig.set_figheight(12)

# color_palette = sns.color_palette("tab10", n_colors=len(data_elastic.potential.unique()))


# for i, phase in enumerate(data_elastic.phase.unique()):
    
    
#     data = data_elastic[data_elastic.phase == phase]
    
    
    
#     for j, pot in enumerate(potentials_list):
#         ax = ax_list[j][i]
#         phonopy_job = pr[get_clean_project_name(pot) + f"/phonopy_job_{phase}"]
    
#         phonopy_job.plot_band_structure(axis=ax)
#         ax.set_ylabel("")
#         ax.set_title(get_clean_project_name(pot)+"__"+phase,fontsize=18)
#         ax_list[j][0].set_ylabel("DOS")
#     # ax_list[0][i].set_title(f"{phase}")
# fig.subplots_adjust(wspace=0.1, hspace=0.4);
fig, ax_list = plt.subplots(ncols=len(data_elastic.phase.unique()), nrows=1, sharex="row", sharey="row")

fig.set_figwidth(20)
fig.set_figheight(5)

color_palette = sns.color_palette("tab10", n_colors=len(data_elastic.potential.unique()))


for i, phase in enumerate(data_elastic.phase.unique()):
    
    ax = ax_list[i]
    data = data_elastic[data_elastic.phase == phase]
    
    n_atom = data_murn[data_murn["phase"]==phase]["n_atoms"].iloc[0]
    
    
    for j, pot in enumerate(potentials_list):
        
        phonopy_job = pr[get_clean_project_name(pot) + f"/phonopy_job_{phase}"]
    
        thermo = phonopy_job.get_thermal_properties(t_min=0, t_max=800)

        ax.plot(thermo.temperatures, thermo.cv/n_atom,
                lw=4,
                label=get_clean_project_name(pot), 
                color=color_palette[j])
        ax.set_xlabel("Temperatures, K",fontsize=18)
    ax.set_title(f"{phase}",fontsize=22)
    ax.tick_params(labelsize=16)
ax_list[0].set_ylabel("C$_v$",fontsize=22)

ax_list[0].legend(prop={"size":16})
fig.subplots_adjust(wspace=0.1);
../_images/validation_LiAl_31_0.png
# phonopy_job.plot_band_structure()

(c) Convex hull#

To assess the stability of the binary phases, we plot a convex hull for the considered phases.

For this task we compute the formation energies of the mixed phases relative to ground state energies of equilibrium unary phases.

from collections import Counter

# pot = "LiAl_yace"

# data_convexhull = data_murn[data_murn["potential"]==pot]
data_convexhull = data_murn.copy()
data_convexhull.head(2)
job_id potential ase_atoms compound crystal_structure a eq_vol eq_bm eq_energy n_atoms phase
0 1140 LiAl_eam (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.039967 16.495612 85.876912 -3.483097 1 Al_fcc
1 1153 LiAl_eam (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al bcc 3.898853 16.147864 48.620841 -3.415312 1 Al_bcc

Using Collections.counter we construct a composition dictionary for all the phases and from that dictionary, we can extract the relative concentrations of Al and Li in each structure

Obtain the equilibrium energies for unary Al and Li phases from the Dataframe

Calculate the relative formation energies by subtracting the total energies of the mixed phases with the energies of eq Al and Li

\[E^{A_xB_y}_{f} = E_{A_xB_y} - (x E_A + yE_B)\]

Similarly calculate the formation energies from DFT ref data

def get_e_form(data_convexhull):
    data_convexhull["comp_dict"] = data_convexhull["ase_atoms"].map(lambda at: Counter(at.get_chemical_symbols()))
    data_convexhull["n_Al"] = data_convexhull["comp_dict"].map(lambda d: d.get("Al",0))
    data_convexhull["n_Li"] = data_convexhull["comp_dict"].map(lambda d: d.get("Li",0))

    data_convexhull["cAl"]= data_convexhull["n_Al"]/data_convexhull["n_atoms"] * 100
    data_convexhull["cLi"]= data_convexhull["n_Li"]/data_convexhull["n_atoms"] * 100

    E_f_Al = data_convexhull.loc[data_convexhull["n_Li"]==0,"eq_energy"].min()
    E_f_Li = data_convexhull.loc[data_convexhull["n_Al"]==0,"eq_energy"].min()

    data_convexhull["E_form"]=(data_convexhull["eq_energy"])-(data_convexhull[["n_Al","n_Li"]].values * [E_f_Al, E_f_Li]).sum(axis=1)
    data_convexhull["E_form_per_atom"] = data_convexhull["E_form"]/data_convexhull["n_atoms"] * 1e3

    data_convexhull = data_convexhull.sort_values("cLi")

    return data_convexhull

df_eam = get_e_form(data_murn[data_murn["potential"]=="LiAl_eam"].copy())
df_nnp = get_e_form(data_murn[data_murn["potential"]=="RuNNer-AlLi"].copy())
df_ace = get_e_form(data_murn[data_murn["potential"]=="LiAl_yace"].copy())

data_convexhull = pd.concat([df_eam,df_nnp,df_ace])
data_convexhull
job_id potential ase_atoms compound crystal_structure a eq_vol eq_bm eq_energy n_atoms phase comp_dict n_Al n_Li cAl cLi E_form E_form_per_atom
0 1140 LiAl_eam (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.039967 16.495612 85.876912 -3.483097 1 Al_fcc {'Al': 1} 1 0 100.000000 0.000000 0.000000 0.000000
1 1153 LiAl_eam (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al bcc 3.898853 16.147864 48.620841 -3.415312 1 Al_bcc {'Al': 1} 1 0 100.000000 0.000000 0.067785 67.785186
5 1205 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [1.9825515172760235, 1.9825515172760237, 2.427925369776811e-16], index=1), Atom('Al', [1.9825515172760235, 1.2139626848884054e-16, 1.9825515172760... LiAl3 cubic 5.607502 62.227580 51.472656 -12.774590 4 LiAl3_cubic {'Li': 1, 'Al': 3} 3 1 75.000000 25.000000 -0.567192 -141.797976
4 1192 LiAl_eam (Atom('Li', [4.359978178265943, 2.5172345748814795, 1.7799536377360747], index=0), Atom('Li', [6.53996726740165, 3.775851862320358, 2.669930456604317], index=1), Atom('Al', [-3.964456982410852e-12... Li2Al2 cubic 6.165940 58.604895 100.347240 -11.074362 4 Li2Al2_cubic {'Li': 2, 'Al': 2} 2 2 50.000000 50.000000 -0.591954 -147.988453
8 1244 LiAl_eam (Atom('Li', [2.142967147985671, 1.2372426587287435, 7.662120717536293], index=0), Atom('Li', [-8.783761113500244e-10, 2.4744853189563414, 0.5913679335098909], index=1), Atom('Li', [-8.783761113500... Li4Al4 cubic 6.061226 131.389799 71.221355 -20.506570 8 Li4Al4_cubic {'Li': 4, 'Al': 4} 4 4 50.000000 50.000000 0.458247 57.280860
7 1231 LiAl_eam (Atom('Al', [2.1548001975659234, 1.244075358781918, 1.861784175000869], index=0), Atom('Al', [-2.154798282819334, 3.732223313213554, 2.6646760238080542], index=1), Atom('Li', [8.560563403365654e-0... Li3Al2 trigonal 6.094693 72.810229 69.231669 -12.413856 5 Li3Al2_trigonal {'Al': 2, 'Li': 3} 2 3 40.000000 60.000000 -0.173341 -34.668107
6 1218 LiAl_eam (Atom('Li', [4.9874611628416465, 1.0099045365192156, 0.8188840806477526], index=0), Atom('Li', [3.1237816780987666, 1.455730745331952, 2.673723152073369], index=1), Atom('Li', [-3.4421956688209843... Li9Al4 monoclinic 13.023701 190.504374 53.125276 -28.970054 13 Li9Al4_monoclinic {'Li': 9, 'Al': 4} 4 9 30.769231 69.230769 0.785300 60.407664
2 1166 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.195477 20.114514 13.690609 -1.757011 1 Li_bcc {'Li': 1} 0 1 0.000000 100.000000 0.001096 1.096047
3 1179 LiAl_eam (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li fcc 4.253841 19.241330 13.985972 -1.758107 1 Li_fcc {'Li': 1} 0 1 0.000000 100.000000 0.000000 0.000000
9 1257 RuNNer-AlLi (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.025259 16.355737 76.669339 -3.484016 1 Al_fcc {'Al': 1} 1 0 100.000000 0.000000 0.000000 0.000000
10 1270 RuNNer-AlLi (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al bcc 3.958447 16.870137 51.052272 -3.432183 1 Al_bcc {'Al': 1} 1 0 100.000000 0.000000 0.051832 51.832389
14 1322 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [2.0154153406879987, 2.0154153406879987, 2.46817194592603e-16], index=1), Atom('Al', [2.0154153406879987, 1.234085972963015e-16, 2.015415340687998... LiAl3 cubic 5.700455 65.403086 59.308440 -12.574696 4 LiAl3_cubic {'Li': 1, 'Al': 3} 3 1 75.000000 25.000000 -0.353389 -88.347230
13 1309 RuNNer-AlLi (Atom('Li', [4.509081801264686, 2.603319591757272, 1.8408249369278522], index=0), Atom('Li', [6.763622701898693, 3.90497938763465, 2.7612374053913604], index=1), Atom('Al', [-3.844724064520768e-12... Li2Al2 cubic 6.376805 64.816143 57.934650 -11.212634 4 Li2Al2_cubic {'Li': 2, 'Al': 2} 2 2 50.000000 50.000000 -0.706083 -176.520795
17 1361 RuNNer-AlLi (Atom('Li', [2.220260976080854, 1.2818682724036983, 7.872085429446316], index=0), Atom('Li', [1.722758777253687e-10, 2.5637365444716322, 0.6790950189344616], index=1), Atom('Li', [1.72275877725368... Li4Al4 cubic 6.279846 146.014891 37.664442 -21.680919 8 Li4Al4_cubic {'Li': 4, 'Al': 4} 4 4 50.000000 50.000000 -0.667816 -83.477017
16 1348 RuNNer-AlLi (Atom('Al', [2.2338755345732753, 1.289729472183878, 1.9126243306628208], index=0), Atom('Al', [-2.233873547699001, 3.869185551846968, 2.7799443936883206], index=1), Atom('Li', [9.007133262260959e-... Li3Al2 trigonal 6.318351 81.143544 44.574696 -13.185198 5 Li3Al2_trigonal {'Al': 2, 'Li': 3} 2 3 40.000000 60.000000 -0.909387 -181.877324
15 1335 RuNNer-AlLi (Atom('Li', [5.206051477294367, 1.0619663179427192, 0.8311820920214751], index=0), Atom('Li', [3.28638171437237, 1.5211864250363467, 2.7226207058417775], index=1), Atom('Li', [-3.6198784902055765,... Li9Al4 monoclinic 13.640614 218.932018 33.874957 -31.820765 13 Li9Al4_monoclinic {'Li': 9, 'Al': 4} 4 9 30.769231 69.230769 -1.961363 -150.874092
11 1283 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.211118 20.286595 8.517306 -1.755918 1 Li_bcc {'Li': 1} 0 1 0.000000 100.000000 0.013342 13.341610
12 1296 RuNNer-AlLi (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li fcc 3.967043 15.678901 147.215464 -1.769260 1 Li_fcc {'Li': 1} 0 1 0.000000 100.000000 0.000000 0.000000
18 1393 LiAl_yace (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al fcc 4.044553 16.541594 87.130427 -3.478909 1 Al_fcc {'Al': 1} 1 0 100.000000 0.000000 0.000000 0.000000
19 1406 LiAl_yace (Atom('Al', [0.0, 0.0, 0.0], index=0)) Al bcc 3.953036 16.811334 72.667242 -3.388831 1 Al_bcc {'Al': 1} 1 0 100.000000 0.000000 0.090078 90.077889
23 1464 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [2.0106543994993293, 2.0106543994993293, 2.462341474538397e-16], index=1), Atom('Al', [2.0106543994993293, 1.2311707372691985e-16, 2.0106543994993... LiAl3 cubic 5.686989 65.028366 66.254925 -12.569153 4 LiAl3_cubic {'Li': 1, 'Al': 3} 3 1 75.000000 25.000000 -0.376321 -94.080320
22 1451 LiAl_yace (Atom('Li', [4.5021943685456485, 2.599343130623782, 1.8380131542949232], index=0), Atom('Li', [6.753291552821257, 3.8990146959337566, 2.7570197314419675], index=1), Atom('Al', [-3.838851410290508e... Li2Al2 cubic 6.367064 64.521799 46.107162 -11.185880 4 Li2Al2_cubic {'Li': 2, 'Al': 2} 2 2 50.000000 50.000000 -0.715855 -178.963696
26 1506 LiAl_yace (Atom('Li', [2.2269869888586107, 1.285751535686306, 7.864026721150146], index=0), Atom('Li', [-1.5554058443124377e-09, 2.571503074062492, 0.7130584901440213], index=1), Atom('Li', [-1.555405844312... Li4Al4 cubic 6.298870 147.356944 46.701117 -21.607231 8 Li4Al4_cubic {'Li': 4, 'Al': 4} 4 4 50.000000 50.000000 -0.667180 -83.397512
25 1493 LiAl_yace (Atom('Al', [2.2270976540671734, 1.2858164055924044, 1.9025646270076813], index=0), Atom('Al', [-2.227095628822777, 3.8574462424884515, 2.7757665665986657], index=1), Atom('Li', [8.407589514518869... Li3Al2 trigonal 6.299181 80.375104 39.643133 -13.138303 5 Li3Al2_trigonal {'Al': 2, 'Li': 3} 2 3 40.000000 60.000000 -0.912174 -182.434806
24 1480 LiAl_yace (Atom('Li', [5.141009159558869, 1.0571139195527752, 0.820249453790277], index=0), Atom('Li', [3.2705789348169056, 1.5045550288016276, 2.715159327393234], index=1), Atom('Li', [-3.601125467999465, ... Li9Al4 monoclinic 13.519944 213.136118 33.963240 -31.796316 13 Li9Al4_monoclinic {'Li': 9, 'Al': 4} 4 9 30.769231 69.230769 -2.075747 -159.672835
20 1419 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li bcc 4.216389 20.403222 15.823747 -1.756104 1 Li_bcc {'Li': 1} 0 1 0.000000 100.000000 0.000000 0.000000
21 1435 LiAl_yace (Atom('Li', [0.0, 0.0, 0.0], index=0)) Li fcc 4.331457 20.318983 14.231625 -1.755594 1 Li_fcc {'Li': 1} 0 1 0.000000 100.000000 0.000509 0.509341

Read df which contains DFT ref data for plotting

convex_ref = pd.read_pickle("dft_convexhull_ref.pckl")
convex_ref
name energy vol compound ao number_of_atoms comp_dict n_Al n_Li cAl cLi E_form E_form_per_atom
438 /home/users/lysogy36/tools/VASP/Al-Li/DFT/Al_fcc/murn/strain_1_0/data.json -13.930995 16.484415 Al_fcc (Atom('Al', [0.0, 0.0, 0.0], index=0), Atom('Al', [0.0, 2.019983601551115, 2.019983601551115], index=1), Atom('Al', [2.019983601551115, 0.0, 2.019983601551115], index=2), Atom('Al', [2.01998360155... 4 {'Al': 4} 4 0 100.000000 0.000000 0.000000 0.000000
910 /home/users/lysogy36/tools/VASP/Al-Li/DFT/LiAl3_mp-10890/murn/strain_1_0/data.json -12.597018 16.295840 LiAl3_mp-10890 (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Al', [2.0122514573524146, 2.0122514573524146, 0.0], index=1), Atom('Al', [2.0122514573524146, 0.0, 2.0122514573524146], index=2), Atom('Al', [0.0, 2.01... 4 {'Li': 1, 'Al': 3} 3 1 75.000000 25.000000 -0.392474 -98.118408
1950 /home/users/lysogy36/tools/VASP/Al-Li/DFT/LiAl_mp-1067/murn/strain_1_0/data.json -11.204795 16.028228 LiAl_mp-1067 (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Li', [2.246243529971499, 1.2968693066945, 0.9170250810763773], index=1), Atom('Al', [4.492487059942998, 2.593738613389, 1.8340501621527545], index=2), ... 4 {'Li': 2, 'Al': 2} 2 2 50.000000 50.000000 -0.726701 -181.675339
1275 /home/users/lysogy36/tools/VASP/Al-Li/DFT/LiAl_mp-1079240/murn/strain_1_0/data.json -21.715330 18.537039 LiAl_mp-1079240 (Atom('Li', [-2.093764484173552e-06, 2.574581270471953, 3.588630766943668], index=0), Atom('Li', [2.229653899294873, 1.2872887040708958, 5.022609593138096], index=1), Atom('Li', [2.229653899294873... 8 {'Li': 4, 'Al': 4} 4 4 50.000000 50.000000 -0.759143 -94.892853
652 /home/users/lysogy36/tools/VASP/Al-Li/DFT/Li3Al2_mp-16506/murn/strain_1_0/data.json -13.176984 16.098544 Li3Al2_mp-16506 (Atom('Li', [7.387307289355338, 3.3557842846492325, 2.205190367378745], index=0), Atom('Li', [4.984874333407062, 2.2644466100798333, 1.488038392346624], index=1), Atom('Li', [0.0, 0.0, 0.0], index... 5 {'Li': 3, 'Al': 2} 2 3 40.000000 60.000000 -0.942593 -188.518538
231 /home/users/lysogy36/tools/VASP/Al-Li/DFT/Li9Al4_mp-568404/murn/strain_1_0/data.json -31.786765 16.532577 Li9Al4_mp-568404 (Atom('Li', [15.085585487572331, 3.6087478779487228, 4.372653838370371], index=0), Atom('Li', [13.209884188064274, 3.160045831227256, 2.4668794892606694], index=1), Atom('Li', [6.31626414433567, 1... 13 {'Li': 9, 'Al': 4} 4 9 30.769231 69.230769 -2.049089 -157.622253
1343 /home/users/lysogy36/tools/VASP/Al-Li/DFT/Li_bcc/murn/strain_1_0/data.json -3.512596 20.099126 Li_bcc (Atom('Li', [0.0, 0.0, 0.0], index=0), Atom('Li', [1.712796338409787, 1.712796338409787, 1.712796338409787], index=1)) 2 {'Li': 2} 0 2 0.000000 100.000000 0.000000 0.000000

Define a function to automatically get the mathematical convex hull

from scipy.spatial import ConvexHull,convex_hull_plot_2d

def get_convexhull(df):
    df_tmp = df.reset_index()

    points = np.zeros([len(df_tmp["cLi"]),2])

    for i,row in df_tmp.iterrows():
        points[i,0], points[i,1] =  float(row["cLi"]), float(row["E_form_per_atom"])

    hull = ConvexHull(points)
    return hull,points
fig,ax = plt.subplots(figsize=(22,8),ncols=len(potentials_list),constrained_layout=True,sharey="row")

dfs = ([pd.DataFrame(y) for x, y in data_convexhull.groupby(by='potential', as_index=False)])

for i,pot in enumerate(potentials_list):
    
    df_tmp = dfs[i].copy()
    
    
    
    ax[i].scatter(df_tmp["cLi"],df_tmp["E_form_per_atom"],marker="o",s=50)
    
    
    df_tmp = df_tmp[(df_tmp["E_form_per_atom"]<0.1) & (df_tmp["E_form"]<0.1)]
    hull,points = get_convexhull(df_tmp)
    
    for simplex in hull.simplices:
        ax[i].plot(points[simplex, 0], points[simplex, 1], 'k-')
    
    
    ax[i].axhline(0,ls="--",color="k")
    ax[i].plot(df_tmp["cLi"], df_tmp["E_form_per_atom"],"o",markersize=10,label="potential")
    ax[i].scatter(convex_ref["cLi"],convex_ref["E_form_per_atom"],marker="x",s=70,
                  label="DFT")
    ax[i].legend(prop={"size":16})
    ax[i].set_xlabel("Li,%",fontsize="20")
    ax[i].set_ylabel("E$_f$, meV/atom",fontsize="20")
    ax[i].tick_params(labelsize=20,axis="both")
# ax.set_ylim(-200,10)
    for _,row in dfs[i].iterrows():
        ax[i].text((row["cLi"]+0.01),row["E_form_per_atom"],row["phase"],size=12)
        
    ax[i].set_title(dfs[i].iloc[0]["potential"],fontsize=22)

plt.show()
../_images/validation_LiAl_41_0.png
time_stop = time.time()
print(f"Total run time for the notebook {time_stop - time_start} seconds")
Total run time for the notebook 180.9642095565796 seconds