{ "cells": [ { "cell_type": "markdown", "id": "b58fa431-18d0-444c-a0c0-b07d8f70fbb4", "metadata": {}, "source": [ "# Exercise 3: Visualizing Training Data" ] }, { "cell_type": "markdown", "id": "7077098d-6b6b-47ed-88a6-1d18133fab7f", "metadata": {}, "source": [ "You'll need to run the Unpack.ipynb notebook before this one!" ] }, { "cell_type": "markdown", "id": "9e785fb5-81c3-4608-bc8f-e159c366c82a", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 1, "id": "ee1d8390-7d8c-4306-a6d0-31c87ee40fcb", "metadata": {}, "outputs": [], "source": [ "from pyiron import Project\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "id": "0415ea7a-509d-4473-8365-ca31568a555a", "metadata": {}, "outputs": [], "source": [ "plt.rc('figure', figsize=(16,8))\n", "plt.rc('font', size=18)" ] }, { "cell_type": "code", "execution_count": 3, "id": "dc7814d6-8fcf-46cc-bdbf-efd01748fa2f", "metadata": {}, "outputs": [], "source": [ "pr = Project('training')" ] }, { "cell_type": "code", "execution_count": 4, "id": "4a0e908e-de03-414a-b998-ac8ba12410a1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idstatuschemicalformulajobsubjobprojectpathprojecttimestarttimestoptotalcputimecomputerhamiltonhamversionparentidmasterid
217168587finishedNonefull/full/cmmc/u/zora/pyiron/projects/2022/POTENTIALS/TutorialNotebooks/workshop_preparation/introduction/training/2022-06-03 00:02:34.816533NoneNonezora@cmti001#1TrainingContainer0.4NoneNone
017168588finishedNonebasic/basic/cmmc/u/zora/pyiron/projects/2022/POTENTIALS/TutorialNotebooks/workshop_preparation/introduction/training/2022-06-03 00:02:47.281055NoneNonezora@cmti001#1TrainingContainer0.4NoneNone
117168589finishedNoneAl_basic_atomicrex/Al_basic_atomicrex/cmmc/u/zora/pyiron/projects/2022/POTENTIALS/TutorialNotebooks/workshop_preparation/introduction/training/2022-06-03 00:02:48.226369NoneNonezora@cmti001#1TrainingContainer0.4NoneNone
\n", "
" ], "text/plain": [ " id status chemicalformula job \\\n", "2 17168587 finished None full \n", "0 17168588 finished None basic \n", "1 17168589 finished None Al_basic_atomicrex \n", "\n", " subjob projectpath \\\n", "2 /full /cmmc/u/ \n", "0 /basic /cmmc/u/ \n", "1 /Al_basic_atomicrex /cmmc/u/ \n", "\n", " project \\\n", "2 zora/pyiron/projects/2022/POTENTIALS/TutorialNotebooks/workshop_preparation/introduction/training/ \n", "0 zora/pyiron/projects/2022/POTENTIALS/TutorialNotebooks/workshop_preparation/introduction/training/ \n", "1 zora/pyiron/projects/2022/POTENTIALS/TutorialNotebooks/workshop_preparation/introduction/training/ \n", "\n", " timestart timestop totalcputime computer \\\n", "2 2022-06-03 00:02:34.816533 None None zora@cmti001#1 \n", "0 2022-06-03 00:02:47.281055 None None zora@cmti001#1 \n", "1 2022-06-03 00:02:48.226369 None None zora@cmti001#1 \n", "\n", " hamilton hamversion parentid masterid \n", "2 TrainingContainer 0.4 None None \n", "0 TrainingContainer 0.4 None None \n", "1 TrainingContainer 0.4 None None " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pr.job_table()" ] }, { "cell_type": "markdown", "id": "1ff50d46-c4f9-440a-bc88-5a8fec27d4f7", "metadata": {}, "source": [ "## Loading Container" ] }, { "cell_type": "code", "execution_count": 5, "id": "a0ebcdf7-3ac8-4359-8840-1036ee3388b8", "metadata": {}, "outputs": [], "source": [ "container = pr.load('basic')" ] }, { "cell_type": "markdown", "id": "f95792b0-f5b6-450b-b08c-f67ba45e060b", "metadata": {}, "source": [ "## Some Predefined Plots" ] }, { "cell_type": "markdown", "id": "ad795198-d689-4b2e-96dc-9e9b4b687aa6", "metadata": {}, "source": [ "### Cell Information" ] }, { "cell_type": "code", "execution_count": null, "id": "e91af194-919e-4268-8f15-56106bd2748b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEcCAYAAADtODJSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAApeUlEQVR4nO3df5xcVX3/8ddHQvgljYQkQrMJIS7GxER+uAFCaZpabWBtwKpVVqqkiUQ0qP3WfitWrcFqxX61tTT4IzVIrBq1SJUACf5qRAQNQdFAMCSQQBICJARCQEpg+Xz/OGeyN8PM7szeuTNz776fj8c+dubMnTtnzj33fO4558695u6IiIgM1otanQEREck3BRIREUlFgURERFJRIBERkVQUSEREJBUFEhERSaXwgcTMxpvZk2Z2UBM/c7WZvbNZn1ckZvaHZrah1flIasc8FVW1sjazWWa2rRV5KgozW2RmX8ti3U0NJLGBfczMDilL32Jmr83iM939AXd/sbv31voeM5thZk+Z2ZEVXvuVmV3c2Fy2p7hdnjazvWb2uJndYmYXmVlm9cbdf+ruk8ryMGDdGGwdqhT0zczNrLNantIys0Njeb6mwmv/amZXp1h3w/el8vJoRlmXpw9W3so6rtfM7D4zW9/odWelaYHEzCYAfwg4cE6zPncw3P1WYBvwpmS6mU0FpgDLW5GvFpnj7kcCxwGXAR8ElrY2S/nm7v8LfAt4RzI99pp7gGWtyJeZDWvF52Ypp2U9ExgDTDSz6U3KUjru3pQ/4B+AnwH/AlyXSP9P4HngaeBJ4O9i+jnAXcDjwGpgcuI9W4D/C/wGeIrQsL0UWAnsBX4IHBWXnUAIXsPi85HAV4AHgceA71bJ798DPy5L+2fgmvj4DOA2YE/8f0ZiudXAO+PjRcDXEq+V52c18Anglvj9VwBHA18HnojrnpB4/yuAHwC7gQ3AWzLcZluA15alnRq311TgEOAzwAPAw8AXgcPicrMIwfgDwCPADuCvEuvpBtbH7bUd+Nvk+6rVDeB64L1lefpN/IzXVvgORwHXATvj9r4O6IivfRLoBf43rn8xcFPcPk/FtLcm8xTfNw64Jq7zUWBx4rV5wN3xs24EjqtStmfE7354WZk8AgwDRhDq9Y5YPp8ADkose2H8nL2xHE+pVF417ksfjGX4DLFeluXVgc7yelFh+18J3BDLZW/Mx8fjd9ob81Yq6y/HsvO4DfYBv41l/UxiGzwF/CLmvRe4mb76tDRR1rcDGymrT3kr67jclYT9/xoSdSvRXvwjoS3dC3wfGJV4/R3A/bFsP0piH+aFbdHphHbnceDXwKzEa3OB++JnbAbO77etyKoRqlA4m4D3AK8GngVeWq3BAl4eK9DrgIMJDcgmYHhi+Z8TgsfYWCF+CZxMqNw/Bj5WpeG+nnCEclRc9x9Vye+4mM/x8fmLCA3jGwjB6DHg7bEi9sTnRyc2dj2BZBPwMkKFXg/cQ9hRhwFfBb4Slz0C2Ar8VXztFGAX8MqMttkB2yWR/gDwbuBzwLWxPI4kBMFPxWVmAc8RGpKDCTvu7+gL8DuAP/S+xv6UxPu2VcsD8BbgF4nnJxJ2mmp5PZrQszw85vG/SBw8JLdVPw3n/jwBBxF2un+N2+NQ4Mz42hvitpwct89HgFv6Kd97gL9MPF8OfC4+/i7wpfgZY4A1wLvia39BaPCmAwZ0EgNWhfKqZV+6g1DfD6uSz2qBpHz7ryI0focDZxMa2t8mtn8v8L64jm/GPwfOItTrm+k7APGY91JZn0WoT1+J6/t4XP9psaz3AuvK61MOy/pwwgFkN6He7iq9P1Ff742fdVh8fll8bQohqJ0JDCcE+WepEEgI7eaj8XNeFPP8KDA6lsMTwKS47LEM0MY0K4icGb/QqPj8t8D/6aex+Cjw7cTzF8WNOSux/PmJ178DfCHx/L3ExoJEwx0L5HliY1ZDvn8I/H18/Lq4UQ8mBJA1ZcveCswtb5yoLZB8OPH6Z4GViedzgDvi47cCPy373C8Rg2YG2+2A7ZJI/znwYcJO87JE+gxgc3w8i3C0Nizx+iPA6fHxA8C7gN8rW/cs+g8khxB6YyfE558BPl8trxXyfhLwWNmOWU8gmUE44q505L4SmF9Wb39H9V7JR4Dvx8e/F5c9mXCA9AyJxoZwsPI/8fGNwPtr2WbUti/NG6DMqgWSgbb//5aV9T7gnwjB+FlgUmndhF5AeSB5c6msy+tTLOsnyurTPqo0eDkq679MfOdDCL2FPy+rrx9JPH8PsCo+/gdgeeK1w2OZVAokHwT+s+yzbwQuIASSxwmBrGLAK/9r1hzJBYSNuCs+/0ZMq+b3Cd0zANz9ecIRy9jEMg8nHj9d4fmLK6x3HLDb3R+rMd/L6BtbfTvwDXd/tjx/0f1l+atHrd/lOOC0OHn4uJk9DpwPHDPIzx2ssYSKfjhweyIvqwhHNCWPuvtziee/o++7vIlwNHS/mf3EzGbU8sHu/gzwbeAv46R/D2GYoSIzO9zMvmRm95vZE4Shq5ekOItvHHB/2fcqOQ74t0R57CYcxVarF18F/tjMxhIazU3u/qu4noOBHYl1fYlwtFzKw7015reWfWlrjetKegmVt3+Hmd1P6PkP58Cyfp7QOI4m1J/k51bKw7EcWNbJ+nQcoS79MH72UYQAdWuV+pSXsr6AEIyei3X9Gl7YVj6UeJzcp34/uX53/x2hl1HJccBflLUlZwLHuvtThIPWiwjlcr2ZvaK/TGc+uWZmhxGGIw4ys1IBHEKoYCe6+68JRx9JDwLTEuswwgbdnjI7W4GRZvYSd3+8huWvAT5vZn8MvJFwVFTK33Fly44n7EjlniLscCVpGv2twE/c/XUp1pFKnPwbSxgO+CDhCLDu7eLutwHnmtnBwMWE4DCu0qIV0pYRgsfNwO/c/dZQRSr6AOHI9zR3f8jMTgJ+RWjgq62/P1uB8WY2rEIw2Qp80t2/XsuK3P0BM/sp4WDgbEJjV1rPM4QefKWAtZUwFFpxtWXPa9mX6i0DCHODT5PY/mb2UeBPgPMIc3nfIjTI5WW9kzBM1ZFYX6Vtv4NY1hVe20oISD3u/sNSYrX6lIeyNrMO4DXAqWZWOtHncOBQMxuVOBCvZgehrpfWdxhhaLeSrYQeyYWVXnT3G4Eb4zo+AfwH4WSpiprRI3kDYWx0CmFY4STCGPJP6TvafxiYmHjPt4HXm9mfxIrxAcLGviVNRtx9B6FL/HkzO8rMDjazmf0s/xRwNWFc9n53XxtfugF4uZm9zcyGmdlb4/e7rsJq7gBmWvg9ywjgQym+wnXxc98e836wmU03s8kp1lkTM/s9M/szwrj21+IBwH8A/2pmY+IyY81sdg3rGm5m55vZiNjDe4JQRyoprxt4OKvuecIwYLI3cnA83bP0N4wwdv808LiZjQQ+NtD6q6SVrCHssJeZ2RHxc/4gvvZF4ENm9sr4PUeY2V9UWU/JMkLD9weECdZSPf0+8NlY7i8ys5eZ2R/F93wZ+Fsze3U8VbTTzEoHNlntS8NL5UoIDMMJk8L/ZmbjYlkfS9+wyJGEIaSk5wlHvL2Eg7RFMb9/RNlZVTH9SWJZE+aiKCvrEcBxsT6908wuGKA+tXtZv50wlzOJvrby5YShvp4a3n81MMfMzjCz4cCl9AXxcl+Ly842s4Pitp1lZh1m9lIzO8fMjoj5f5Lq+2dQy/hXmj/CUfpnK6S/hdBFGwacSxjjfJy+s3f+nDDxvAf4CYmxT144Nvk1YFHi+TuBH8bHE3jhWVvLCJXgMeJZWP3kf1Z8/wfL0s8knCmyJ/4/s2wc852J51fE77aJcAZI+RxJctlPAFclnr+W0A0vPZ9EGDYonTH0Y+CkjLbdFkIjvDd+z1uBhcQzWgg79z8Rzu54gnBmS2kydRaJuY7kdiM0Qqti+ZfOTDuz0vsq1Y2Y/pFYjhMT6/ayv08QuvurCTvDPYR5mWT5z4jpjwGXx7SLCA3Y44R6Wp6n8YQe2aOEebPLE6+9HVgXv9dW4MoByviIWL4ry9JHAF8gNCJ7CL2o8xKvX0Q4a+9J4E7g5GrlRR37UpU8lpdrpb9nCGdNbYx52hrLNFnWO+L3eYxwEHI9oX7tI8ynrKNvjqS0DfYQgvceQmOWLOud9NW9p2MeDqhPeSprwtzxeyuk/x2wtkp7MRe4uez5A/SdtbWdvpNaFnHgfO1pMY+7Y1leT6jbx8b0PfSdfTalvzpicYUiuWJm7wAWuPuZrc6LpGdmnwaOcff+5k6lDmb2YkIgOMHdN2f5WYW/RIoUj5kdTjhbZUmr8yKDY2avMLNXxeGiU4H5wH+3Ol95Z2ZzLJxgcgThjMZ1hJ5QphRIJFfiHMxOwtDkN1qcHRm8IwnzJE8R5hY+C3yvpTkqhnMJk/4PAicQhugyH3bS0JaIiKSiHomIiKTSFhdpGzVqlE+YMKHV2Whrt99++y53Hz3wkgdS2Q5ssGULKt+BqGyzlaZ8G6mlgcTM5gBzOjs7Wbt27YDLD2UWfi1ctwkTJqhsBzDYsgWV70BUttlKU76N1NKhLXdf4e4LRowY0cpsiIhICpojERGRVBRIREQkFQUSERFJRYFERERSUSAREZFUFEgKKl5zZ8mePXtanRURKTgFkoLSqdUi0ixt8cv2/ky45Pr9j7dc9voW5qTYkuUMKuumWxQD/iL1IHNv0Yghtx1b2iPR8IuIFNG0ZdOYtmzawAsWhH7ZLhKZ2WQz+6KZXW1m7251fkTyQnMkUmjz5s1jzJgxTJ069YD0VatWMWnSJDo7OwGOAXD3u939IsLtdbuanlmRnFIgkUKbO3cuq1atOiCtt7eXhQsXsnLlStavXw8w0symAJjZOcDNwI+antkCU2+v2BRIpNBmzpzJyJEjD0hbs2YNnZ2dTJw4keHDhwPsJtxZDne/1t3PAM6vtk4zW2Bma81s7c6dO1PnsfxEh7xQb09KFEhkyNm+fTvjxo1LJu0DxprZLDO73My+BNxQ7f3uvsTdu9y9a/Tolt8KomXU25OStj/9V6TRqtxe2t19NbC6qZnJsZkzZ7Jly5YD0pK9vajU21vv7tcC15rZ9cA3Kq3TzBYACwDGjx+fUc6l0RRIZMjp6Ohg69atyaThwIP1rCN5Uzbp019vD3gjcAgD9PaAJQBdXV0VI760HwUSGXKmT5/Oxo0b2bx5M2PHjgUYCVxbzzrcfQWwoqur68Is8phX6u0NTZojkULr6elhxowZbNiwgY6ODpYuXcqwYcNYvHgxs2fPZvLkyQC73f2uVue1CBrV29MPlfNFPRIptOXLl1dM7+7upru7GwAze6je9WY1tFX6NfS6C9btP5urdLma5Gvtaij39vZvr0NbnJEWUI9EZBB0VQb19qSPeiQ5Y2aTgfcDo4AfufsXWpwlGaKy6u1J/qhH0gb0wy6RPpojyR8FkjagH3bljxq77GjYMH8aHkh0TZ36NfoyHo2+hIe8kBo7kT41BRIzu9LMHjGzO8vSzzKzDWa2ycwuAQ29NEqay3joEh6SZ+rt5U+tPZKrgLOSCWZ2EHAFcDYwBejR0Evj9PfDLnd/n7u/y92vaHa+RLKm3l7+1BRI3P0mwtBK0qnAJne/z933Ad+khVdQLZq0P+zSUV22VL4ifdLMkYwFki3dNnQF1YZJ/rBr3759UOcPu3RUly2Vr0ifNL8jsQppuqbOIPT09LB69Wp27dpFR0cHl156KfPnz9//w67e3l7QD7tkiNAFMfMnTSDZBiRngzvQFVQHJYsfdqlsJa/yeomUoSzN0NZtwAlmdryZDQfOYxDX1NHwQDZUtiLSLLWe/rscuBWYZGbbzGy+uz8HXAzcCNwNfFtDLyIiQ09NQ1vu3lMl/Qb6mVAfiIZfsqOyzZbKV6RPSy+RouGX7Khss6XyFemja22JSFvRb3TyR4FERNqKenv509L7kWicWaQGi2KDevz41uZDpArNkRSUhgfa17Rl0/bfNlekCDS0VVAK0tlSoBbpo0AiMggK1NIIEy65ngmXXN/qbKTW0kCiozoRKad2IX80R1JQ2hklr9Qu5I+GtgpKO6OINIsCiYhIvRaN6DstWzRHItJUanykgDRHIiJDl3oWDaGhLZFBUG9apI8CSUGpocuWetMifRRICkoNneSVDoLyR4FERNqKDoLyR2dtiYhIKjprS0REUtHQlohIP3TZ/4EpkIiItIm8Bi0FEhERSUWBpKB0IoNI9vLag2i0lt6zXbLj7iuAFV1dXRe2Oi8iRVG6CdWWQ1uckTbT0kBiZnOAOZ2dna3Mhkjd6q27aoCkyHT6r8ggqO6K9NEciYi0Fc3v5Y/mSKSi0lAMwJbLXt/CnMhQo/m9/FGPREREUlEgERGRVBRIREQylhwqLiIFEhERSUWBpKB05ouINIsCSUHpdw4i0iwKJCIyJBV93qKZdIdEERFJRZdIERGRVDS0JSIiqSiQiEjbm3DJ9ZrTaGMKJCIibShPwVOBRCQyszeY2X+Y2ffM7E9bnR+RvFAgkUKbN28eY8aMYerUqQekr1q1ikmTJhFvTHUMgLt/190vBOYCb212XkXySoFECm3u3LmsWrXqgLTe3l4WLlzIypUrWb9+PcBIM5uSWOQjwBVNzOaQoB5fcSmQSKHNnDmTkSNHHpC2Zs0aOjs7mThxIsOHDwfYDZxrwaeBle7+y2rrNLMFZrbWzNbu3Lkz0/y3u4F6fMBUM7sEctjjWzQi/MmAFEhkyNm+fTvjxo1LJu0DxgLvBV4LvNnMLqr2fndf4u5d7t41evTobDPb5gbq8QF3AT3q8RWb7pAoQ467V0n2y4HLm5ydXJs5cyZbtmw5IC3Z4wMc+Cahx3c3cBn99PjMbAGwAGD8+PEZ5lwaSYFEhpyOjg62bt2aTBoOPFjPOsxsDjAnTtYDfddu2nLo2wCYdvx41l2wLmVu86dCj28bcBp9Pb4RZtbp7l8sf6+7LwGWAHR1dVWM+NJ+NLSVM5qwTG/69Ols3LiRzZs3s2/fPoCRwLX1rEOX96muvx6fu7/a3S+qFEQkvxRI2oBOUc1OT08PM2bMYMOGDXR0dLB06VKGDRvG4sWLmT17NpMnTwbY7e53tTqvRVGhx9dBHT2+Rl7Mdf+P+haNYNqyaUxbNq3icv29JgNTIGkDOkU1O8uXL2fHjh08++yzbNu2jfnz5wPQ3d3NPffcw7333gvwUEszWTDJHh9gwHnU0eNTby9/MgkkGn6pTxanqEq2dAuEYKAeH/BK4Nvq8RVbzYHEzK40s0fM7M6y9LPMbIOZbcrt+eJtKM0pqvqdQ/Z01BwM1OMD7nT3T9azTgXp/KmnR3IVcFYywcwOIgyvnA1MQeeLN0yaCUv9zkHyTEE6f2oOJO5+E2F4JelUYJO73+fu++g7X3zA4RcdNfcv7SmqOqrLlspXpE/aOZKxQLK120aNwy86au5f2lNUdVSXLZWvSJ+0gcQqpOl88TrpFFVJq0inrqq3lz9pf9m+DUjOCNd9vjhlvw4eipYvX14xvbu7m+7ubgDMTKeoypDg7iuAFV1dXRe2Oi9Sm7Q9ktuAE8zseDMbjs4Xbxs6qhORZqnn9N/lwK3AJDPbZmbz3f054GLgRuBudL5421CQzpYCtUifmoe23L2nSvoNwA2D+XANbUleafglO2oX8qell0jRUXN2dMQseaV2IX90ra2C0s4oIs3S0kCio2YRkfzT0JbIIOggSKSP7pBYULVMWJbu6Cf102R7djTZnj+aIyko9fakqkUjwl+bUt3NH82RiIhIKpojERGRVDRHMsRoXkREGk1zJAWlYcNsqXxF+iiQFJSGDbOl8s2OgnT+aLJdRNqKgnT+aLJdRERS0dCWiIikokAiIiKptN3pvzo9tTF0mQkRaRb1SApK808yqMug9Hf5lDa/tIq0js7aEhkE1V2RPjprS2QQ8lp38zB0rCCdPxraEpG2ktcgPZQpkIjk0IRLrs9F70KGhrY7a0tE6lCa/D5+fGvzIUOaeiQFpXFmEWkWBZKC0jiziDSLTv8VEZFUdPqviIikoqEtERFJRYFERIpBl3BpGQUSkUHQ/J5IHwUSkUHQ/F52FKTzR4FERNqKgnT+6JftIgVTunTKlkNbnJGcUvnVTz0SERFJRYGkoDTOLCLN0tKhrXpvB5u82umWy16fUa6Kwd1XACu6uroubHVeRKTYWhpI1NiJZGvasmkArLtgXb/LaV5A0tDQloiIpKJAIiIiqSiQiIhIKgokIiKSigKJiIikokAiIiKpKJCIiEgqCiQiIpKKAolIZGYTzWypmV3d6ryI5IkCiRTavHnzGDNmDFOnTj0gfdWqVUyaNIl4eZ5jANz9Pnef34JsFp6CdLEpkEihzZ07l1WrVh2Q1tvby8KFC1m5ciXr168HGGlmU1qSwRxrlyA94ZLrD7gO37Rl0/ZfGkaaQ4FECm3mzJmMHDnygLQ1a9bQ2dnJxIkTGT58OMBu4NxW5C/PFKSlRIEkZzREkN727dsZN25cMmkfMNbMjjazLwInm9mHqr3fzBaY2VozW7tz586ss9u2sgjSKtt8anggUUNXv3YZIhgq3L1Ksj/q7he5+8vc/VP9vH+Ju3e5e9fo0aOzy2gOpQ3SKtt8qimQmNmVZvaImd1Zln6WmW0ws01mdgmooRsMDRE0V0dHB1u3bk0mDQcebFF2CiVtkJZ8qrVHchVwVjLBzA4CrgDOBqYAPWroBqfRQwQaHujf9OnT2bhxI5s3b2bfvn0AI4Fr61mH7kBZWSOCtMo2f2oKJO5+E6EhSzoV2BR7IPuAb6Kx0IZJM0Sg4YE+PT09zJgxgw0bNtDR0cHSpUsZNmwYixcvZvbs2UyePBlgt7vfVc963X2Fuy8YMWJENhnPqUYEaZVt/qS5Q+JYIHnosQ04zcyOBj5JbOiqdWPdfQmwBKCrq6tif3go62+IALioydnJreXLl1dM7+7upru7GwAze6iZeSqKnp4eVq9eza5du+jo6ODSSy9l/vz5+4N0b28vDCJIS/6kCSRWIU0NXYOkHSIwsznAnDhRLw1WhPKt9Ta81ShIS0mas7a2Acmxlw40FtowaYcINDyQLZVvdtQu5E+aQHIbcIKZHW9mw4Hz0FjooGQ1ji+SR2oX8qemoS0zWw7MAkaZ2TbgY+6+1MwuBm4EDgKuVEM3OFkMERRh6EVE8qGmQOLuPVXSbwBuGOyHq7HLjruvAFZ0dXVd2Oq8FNFQqrul61htObQ5nzeUyrYoWnqJFHVhJa9Ud7Ojss0fXWtLRERSUSApKJ35IiLN0tJA0urGrnQfg+S9DIpCwwPZanXdLTKVbf5ojkRkEFR3s6OyzR8NbYmISCoKJAWl4QERaZY019pKrZHniyfnObZc9vrU68s7/Y5ERJpFcyQig6AeX5lF2oeHMg1tiQyCDoKyoyCdPwokItJWFKTzpzBzJEmaL9H8k4g0j+ZICkplKyLNoqEtERFJRYFEZBCKPiE8bdm0/bfiFRmIAonIIGjoMDtFD9JFpEBSUNoZJa8UpPOnkGdtJQ3VM470y3YRaRadtSUiIqloaEtERFJRIBERkVQUSEREJBUFEpFB0FlxIn0USEQGQSeKZEdBOn9aevqvZKcZp1aXG6qnWktj6dT1/Mnt70iSjVbWqn1WeWNZ63K1fk6axlg7o4g0i35HIiIiqWiOREREUlEgERGRVBRIREQkFQUSERFJRYFERERSUSAREZFUFEhERCQVBRKRQdBlPLKjss2f3P6yfTD6+zV8lr+U72/dWV1KJKuyrfXX90W/XIquHJAdlW3+6JftBaWyFZFm0dCWiIikokAiIiKpKJCIiEgqCiQiIpKKAomIiKSiQCIiIqkokIiISCoKJCIikooCiYiIpKJAIiIiqSiQiIhIKgokIiKSigKJiIik0vDLyJvZEcDngX3Aanf/eqM/YyhT+WZHZZsdlW2x1dQjMbMrzewRM7uzLP0sM9tgZpvM7JKY/Ebgane/EDinwfktpHnz5jFmzBgeXPqeA9JXrVrFpEmTiPcUOSYmq3zrUCrbqVOnHpCusk1PZSsltQ5tXQWclUwws4OAK4CzgSlAj5lNATqArXGx3sZks9jmzp3LqlWrDkjz53tZuHAhK1euZP369QAjVb71q1S2vb0q20ZQ2UpJTUNb7n6TmU0oSz4V2OTu9wGY2TeBc4FthEpzB/0EKjNbACwAGD9+fL35LozSnQSf27PpgPR9O+7hFZ2dTJw4sZS0mxrLt93Ktta7KmZh5syZbNmy5YB8PLP9bl41yLKF9ivfZpu2bBrrLljHzJkz6Xj3lTzy8N79r61Zs4ZOlW2/pi2bBsC6C9a1OCeNk2ayfSx9RxgQKspY4BrgTWb2BWBFtTe7+xJ373L3rtGjR6fIRjE9t/dRxo0bl0zaR43lq7LtX5qyBZVvf7Zv366yHYLSTLZbhTR396eAv0qxXqlO5ZsdlW0DuHuVZJVtkaXpkWwDkoceHcCD9azAzOaY2ZI9e/akyEYxDTvyaLZuTXb4GE4d5auyrS5t2YLKt5qOjg6V7RCUJpDcBpxgZseb2XDgPODaelbg7ivcfcGIESNSZKOYhh/7cjZu3MjmzZvZt28fwEjqKF+VbXVpyxZUvtVMnz5dZTsE1TS0ZWbLgVnAKDPbBnzM3Zea2cXAjcBBwJXufldmOS2wndf+M888sI7ep59g2xUXMOLM8znyxD9l8eLFzJ49m97eXoDdKt/69fT0sHr1anbt2oXfr7JtpJ6eHh5acSO9Tz9Bx788z6XjljJ//nyV7RBU61lbPVXSbwBuGOyHm9kcYE4833zIGn3O31VM7+7upru7GwAze6iedapsg+XLl+9/nDx7LE3ZxvcM+fJdvnw5t8Yy3XLo22D+fEBlOxS19BIp6sJmR2WbLZVvdlS2+aNrbYmISCotDSQ6OyM7KlsRaRarct53czNhthO4Pz4dBexqYXayNtjvd5y71/0LrRyXbTPzOqiyhReUbxaaVQ5ZfU7dZVuaIwHeCmxsUD5aWfez/OxB191GaotAkmRma929q9X5yEorv1+eyjZPec1Ss8qh6OWt/S5bmiMREZFUFEhERCSVdgwkS1qdgYy18vvlqWzzlNcsNascil7e2u8y1HZzJCIiki/t2CMREZEcUSAREZFU2iaQVLn/e+6Y2Tgz+x8zu9vM7jKz98f0kWb2AzPbGP8flXjPh+L33mBmswfxmf2WnQWXx9d/Y2an1PreLNSQ3/NjPn9jZreY2YmJ17aY2Tozu8PM1jYjv81iZlea2SNmdmcirWq9GeRn1F0/86hSPcnqO9a73dLu723J3Vv+R7h68L3ARML9C34NTGl1vgb5XY4FTomPjwTuIdzT/p+BS2L6JcCn4+Mp8fseAhwfy+GgRpYd0A2sJNyM7HTgF60q9xrzewZwVHx8dim/8fkWYFSrt3NGZTMTOAW4M5FWsd40q37m9a9SPcnqO9az3dLu7+361y49kv33f3f3fUDp/u+54+473P2X8fFe4G7CrUbPBZbFxZYBb4iPzwW+6e7PuPtmYBOhPGpVS9mdC3zVg58DLzGzY2t8b6MN+Jnufou7Pxaf/pxw07TCc/ebCPc4T6pWbwb7GfXWzyLJ5DvWud3S7u9tqV0CSbX7v+eamU0ATgZ+AbzU3XdA2JmBMXGxtN+9lvdXW6YV5V7vZ84n9KZKHPi+md1uZgsyyF+7qVZvUquxfuZVpXrSzO+Y1f7eltLcs72RKt7/vem5aCAzezHwHeCv3f0Js0pfMSxaIa2e717L+6st04pyr/kzzeyPCYHkzETyH7j7g2Y2BviBmf02HhFKHeqon3n1gnrS6gxFhWvroH16JKnv/95OzOxgwk76dXe/JiY/HIeTiP8fielpv3st76+2TCvKvabPNLNXAV8GznX3R0vp7v5g/P8I8N8UYFhgANXqzaDVWT9zqUo9aeZ3zGp/b0vtEkhS3/+9XVg4tFsK3O3u/5J46Vrggvj4AuB7ifTzzOwQMzseOAFYU8dH1lJ21wLviGdvnQ7sid3tVpT7gJ9pZuOBa4C3u/s9ifQjzOzI0mPgT4E7KbZq9WZQBlE/c6efetLM75jV/t6eWj3bX/ojnFl0D+Eshg+3Oj8pvseZhK7qb4A74l83cDTwI8JlsX8EjEy858Pxe28Azm5E2QEXARfFxwZcEV9fB3S1stxryO+XgccS5bc2pk8knPHya+CuPNeTKuWyHNgBPEs4cp3fX71pVv3M21+1epLVd6x3u6Xd39vxT5dIERGRVNplaEtERHJKgURERFJRIBERkVQUSEREJBUFEhERSUWBREREUlEg6YeZ/buZ/dLMpifSJpvZF83sajN7dyvzJ9JIleq7SC0USKqIv4gdA7wL+LNSurvf7e4XAW8BulqUvVyqp6FSwG6uavV9qDCzj8f7l9yT9mKgZjbBzJ42szsSaefFuv/X8flh8V4p+8xsVLrct16hA4mZdZrZurK0Q8xss5lNSaS9YMO7+1OEezesBi4vW8c5wM2EX6wWrlJkod6GSgG7j5nNMrP/bNC6XlDXoXJ9Hyr1Ot5c6mTgJOBNNOby8ve6+0mJ5+cB04HTzezF7v50fD3319mCggcS4D5gnJklv+cC4Cfuvr5s2QM2vJkdDRwO7AV6kwu6+7XufgZwfnxeqEqRRj0NVVx+mpldV/Y3Jr62P2APlUatipOAXzVwfeWNXMX6nud6bWavNLMfxh7GR2NvuFpP+BzgKuBg4GLCBS2rrfcEC3df7IzPDzazX5vZQPfMKV31t9pVt3Ot0IHE3Z8HHgAmQDjCAj4ALKrh7R8BPkO4Vk+y9zLLwm1rvwTc0OAsF0VNDRWAu69z9z8r+3skvrY/YOe5UavEzN5sZj+PjdDNZja6n8VPBMaa2S/M7D4zm9XPen/fzL5jZr8ys9+aWa1XR65Y3/PIzA4F/gt4P6Hs3gmMdffbqrzl1YS7RT5KuBbZ8mrrdveNwBKgdIvci4Hvufu2AbJ1DbCWcN24vTV+ldwodCCJ7gZeER8vBK519y39vcHCDX/OAL4V3//K0mvuvtrd3+fu73L3KzLJcZszs/eY2Z1mdr+ZvbfGt9XVUA2BgP0/7n66u58I/IAwhFfNScBedz+NcHHLf6y0kJkNI9wE7CvufjLh9q93D5SR/up7Tr0W+JW73+XuTxNu6fzZSgvG0YoOd78KGAXcDvzNAOu/E5hkZiMJF2j89EAZcvdl7n6yu1fMR961y42tsnQ3YaPfRAgkp9fwnk8AH3d3N7Mi7FgNY2ZvAl5HGFMeBawzsy+4+3P9vGcCoaH6G8IR3yuBW/r7HHdfTRgGK6q5ZvZWwr27jwH+vtJCMTgcDfxTTLqDUO6VvIFwefjrANz9dzXmpWj1/WTglxB6aMCT7v6zKstOIlyhF3d/2sx+Rtge/bmH0JYsAj4Th22HtKHUI3k/4UY+D/e3sJmdBLwRuMLMtgAfJf87ViO9D/iguz/r4Z4mzzJwPdrfUFGMI95UzOwdhBstvSb2SDYQemqVTCHc435ffH4K4fLolZxEuMd9PXk5ieLV92cIN4wC+BShRwKAmf3IzJK3tj0ZOMTMDjKzQ4C3Ad/tZ3kIl4A/hbANv9r47OfPUAkkpwLzgP9Xw/KfBua4+wR3n0AYY837jtUQFu6s9yqPN5uycOe3XYlGrtJ7TqJ4DVVa04Bb3P3J2MM7g3CfmEoN14nA8fFswxcDHwM+V2XZh0iU7QDzLiVFrO/fAGaa2QZC0L3VzD4Xh7E6gd2JZU8CDiMEh58By9z917B/2Kt8edz9WeAJ4JI4DzvkDYWhrQ2EHffD7r6nvwXN7DXAEe7+o1Kauz9s4Y5rI919dz9vHwqmACPMbCKwhXC09+8DvKfUUJVOlX4pjT0DKY+WAd8zszcT5n/uc/enqjRcJwJfJwwFHgb8o7v/vMqyVwHfMLO7CD3Ff6CfO14Wtb7Hie9Xl6eb2VTgO3HepORkwp04K91pc0qF5UsOBn7SiPwWQeEDibs/Q43f091/DPy4QvqIRucrp04mNGrLgSOAa9x9SbWFi9pQpRUbrZclkj4V/7+g4XL3v40PP1K2mkrLPkk4lbXWfAyp+h7LvXwi/RXAb+tYvjTnd79XvytgL+GA647ysxcT6zgMuJUQkHLfq9EdEgEzG0c44nu02oYf4P2lSjEamFbUBtLMPgfc6u7f6meZCcB17j41ozxsIdwqeFcW6y+6eur6UKnXkp4CidTMzFYD73L3Df0skyoo97NeNWoibUqBREREUhkKZ22JiEiGFEhERCQVBRIREUlFgURERFJRIBERkVQUSEREJBUFEhERSeX/Ay6BE+rIWHVqAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "container.plot.cell();" ] }, { "cell_type": "markdown", "id": "3353c813-426c-4532-8b57-74500ecb4373", "metadata": {}, "source": [ "### Cell Symmetries" ] }, { "cell_type": "code", "execution_count": 7, "id": "deb03a6b-cf55-44cb-b47e-050f4ff2b997", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEnCAYAAABFbJPAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwh0lEQVR4nO3dd7wdVbn/8c83AQPSRAgtARMgdCSQUGwR9F6IqBQRSSwQE43wA2k2sHJVxI4FwYsQAS8k4qVKkyqgUgwQU0AkCEqACwHvFSwgJM/vj2ftZNick3Nyzj51vu/Xa15nZs3sNTM7O8+sWWvNGkUEZmZWD0P6+gDMzKz3OOibmdWIg76ZWY046JuZ1YiDvplZjazS1wfQkfXXXz9GjRrV14dhg9Rdd931VEQM7+39+ndtPWlFv+t+H/RHjRrF7Nmz+/owbJCS9Ke+2K9/19aTVvS7dvWOmVmNOOibmdWIg76ZWY046JuZ1YiDvplZjTjom5nViIO+mVmNOOibmdWIg76ZWY30+ydyzepm1AlXdjuPh7/69hYciQ1GHZb0Jc2Q9KSk+ZW0n0qaU6aHJc0p6aMk/bOy7oeVz4yTNE/SQknfk6QeOSMzM2tXZ0r65wCnAec1EiLikMa8pG8Bf61s/2BEjG0jnzOA6cDtwFXARODqlT5iMzPrsg5L+hFxC/CXttaV0vp7gJkrykPSxsDaEXFb5Et5zwMOWOmjNTOzbuluQ+6bgCci4oFK2mhJ90i6WdKbStoIYFFlm0UlrU2SpkuaLWn24sWLu3mIZmbW0N2gP5mXlvIfBzaLiJ2B44ELJK0NtFV/H+1lGhFnRsT4iBg/fHivD3VuZjZodbn3jqRVgHcB4xppEfE88HyZv0vSg8BWZMl+ZOXjI4HHurpvMzPrmu6U9P8N+H1ELKu2kTRc0tAyvzkwBvhjRDwOPCtpj9IOcChwWTf2bWZmXdCZLpszgduArSUtkjStrJrEyxtwJwBzJf0O+G/g8IhoNAIfAZwFLAQexD13rI9NnToVYCd3R7Y66bB6JyImt5M+pY20i4CL2tl+NrDDSh6fWY+ZMmUKP/7xj6udENwd2QY9D8NgtTVhwgSAF9ta5+7INlg56Ju1rUe6I5v1NY+9Y9a29rojPy1pHHCppO1Zie7IkqaT1UBsttlmLT5cs85xSd+sSaU78k8baRHxfEQ8XebvIjsjrFR3ZD9/Yv2Bg77Zy7k7sg1aDvpWW5MnTwbYBndHthpxnb7V1syZM5k1a9bciBhfTXd3ZBvMXNI3M6sRB30zsxpx0DczqxEHfTOzGnHQNzOrEQd9M7MacdA3M6sRB30zsxpx0DczqxEHfTOzGnHQNzOrEQd9M7MacdA3M6uRDoO+pBmSnpQ0v5J2kqRHJc0p076VdSdKWijpfkn7VNLHSZpX1n2vjD1uZma9qDMl/XOAiW2knxoRY8t0FYCk7cixyLcvnzm98eIJ4AzyVXFjytRWnmZm1oM6DPoRcQvwl462K/YHZpVXyz1EvlRiN0kbA2tHxG0REcB5wAFdPGYzM+ui7tTpHyVpbqn+WbekjQAeqWyzqKSNKPPN6W2SNF3SbEmzFy9e3I1DNDOzqq4G/TOALYCxwOPAt0p6W/X0sYL0NvkF0mZmPaNLQT8inoiIJRGxFPgRsFtZtQjYtLLpSOCxkj6yjXQzM+tFXQr6pY6+4UCg0bPncmCSpGGSRpMNtndGxOPAs5L2KL12DgUu68Zxm3Xb1KlTAXZyzzSrk8502ZwJ3AZsLWmRpGnA18uPfC6wF3AcQEQsAC4E7gWuAY6MiCUlqyOAs8jG3QeBq1t9MmYrY8qUKQAPtLHKPdNs0Fqlow0iYnIbyWevYPuTgZPbSJ8N7LBSR2fWgyZMmADwIp27413WMw14SFKjZ9rDlJ5pAJIaPdNcqLF+yU/kmr1cj/VMM+trDvpmL9VjPdPcFdn6Awd9s4qe7JnmrsjWHzjom1W4Z5oNdh025JoNVpMnTwbYBpCkRcAXgD0ljSWraB4GPgLZM01So2fai7y8Z9o5wOpkA64bca3fctC32po5cyazZs2aGxHjK8numWaDmqt3zMxqxEHfzKxGHPTNzGrEQd/MrEYc9M3MasRB38ysRhz0zcxqxEHfzKxGHPTNzGrEQd/MrEYc9M3MasRB38ysRhz0zcxqxEHfzKxGOgz65T2hT0qaX0n7hqTfl/eIXiLpVSV9lKR/SppTph9WPjNO0jxJCyV9r7xwwszMelFnSvrnABOb0q4DdoiI1wJ/AE6srHswIsaW6fBK+hnAdPKNQ2PayNPMzHpYh0E/Im4B/tKUdm1EvFgWb+el7wh9mfIKurUj4raICOA84IAuHbGZmXVZK+r0p/LS18ONlnSPpJslvamkjSBfIN2wqKS1SdJ0SbMlzV68eHELDtHMzKCbQV/SZ8j3hZ5fkh4HNouInYHjgQskrQ20VX8f7eUbEWdGxPiIGD98+PDuHKKZmVV0OehLOgx4B/C+UmVDRDwfEU+X+buAB4GtyJJ9tQpoJPBYV/dt1gpTp04F2MmdFKxOuhT0JU0EPgXsFxH/qKQPlzS0zG9ONtj+MSIeB56VtEf5D3EocFm3j96sG6ZMmQLwQFOyOynYoNaZLpszgduArSUtkjQNOA1YC7iuqdQzAZgr6XfAfwOHR0SjEfgI4CxgIXkHUG0HMOt1EyZMgKyeXMadFGywW6WjDSJichvJZ7ez7UXARe2smw3ssFJHZ9a3pgI/rSyPlnQP8Azw2Yi4lZXspGDW1zoM+mZ1tIJOCk9LGgdcKml7VqKTgqTpZDUQm222WesP2qwTPAyDWZOe6qTgXmnWHzjom1W4k4INdq7esdqaPHkywDaAJC0CvkD21hlGdlIAuL301JkAfFHSi8ASXt5J4RxgdbKDgjspWL/loG+1NXPmTGbNmjU3IsZXkt1JwQY1V++YmdWIg76ZWY046JuZ1YiDvplZjTjom5nViIO+mVmNOOibmdWIg76ZWY046JuZ1YiDvplZjTjom5nViIO+mVmNOOibmdWIg76ZWY046JuZ1UiHQV/SDElPSppfSXu1pOskPVD+rltZd6KkhZLul7RPJX2cpHll3ffKW4bMzKwXdaakfw4wsSntBOCGiBgD3FCWkbQdMAnYvnzm9MYr5oAzyJdCjylTc55mZtbDOgz6EXEL8Jem5P2Bc8v8ucABlfRZ5SXSDwELgd0kbQysHRG3lRdNn1f5jJmZ9ZKu1ulvWF4ITfm7QUkfATxS2W5RSRtR5pvT2yRpuqTZkmYvXry4i4doZmbNWt2Q21Y9fawgvU0RcWZEjI+I8cOHD2/ZwZlVTZ06FWAnt1dZnXQ16D9Rqmwof58s6YuATSvbjQQeK+kj20g36zNTpkwBeKAp2e1VNqh1NehfDhxW5g8DLqukT5I0TNJo8j/AnaUK6FlJe5RS0KGVz5j1iQkTJgC82JTs9iob1FbpaANJM4E9gfUlLQK+AHwVuFDSNODPwMEAEbFA0oXAveR/piMjYknJ6giyJ9DqwNVlMutvXtJeJanaXnV7ZbtGu9QLdLK9StJ08o6AzTbbrMWHbdY5HQb9iJjczqq3trP9ycDJbaTPBnZYqaMz6z+63V4VEWcCZwKMHz++3TYts57kJ3LNXsrtVTaoOeibvZTbq2xQ67B6x2ywmjx5MsA2gNxeZXXhoG+1NXPmTGbNmjU3IsY3rXJ7lQ1art4xM6sRB30zsxpx0DczqxEHfTOzGnHQNzOrEQd9M7MacdA3M6sRB30zsxpx0DczqxEHfTOzGnHQNzOrEQd9M7MacdA3M6sRB30zsxpx0DczqxEHfTOzGuly0Je0taQ5lekZScdKOknSo5X0fSufOVHSQkn3S9qnNadgZmad1eU3Z0XE/cBYAElDgUeBS4APAqdGxDer20vaDpgEbA9sAlwvaavKK+fMzKyHtap6563AgxHxpxVssz8wKyKej4iHgIXAbi3av5mZdUKrgv4kYGZl+ShJcyXNkLRuSRsBPFLZZlFJexlJ0yXNljR78eLFLTpEs85x1aUNZt0O+pJeAewH/KwknQFsQVb9PA58q7FpGx+PtvKMiDMjYnxEjB8+fHh3D9FspUTE/RExNiLGAuOAf5BVl5BVl2PLdBW8rOpyInB6qfI063daUdJ/G3B3RDwBEBFPRMSSiFgK/IjlVTiLgE0rnxsJPNaC/Zv1JFdd2qDSiqA/mUrVjqSNK+sOBOaX+cuBSZKGSRoNjAHubMH+zXpSy6ouXW1p/UG3gr6kVwL/DlxcSf66pHmS5gJ7AccBRMQC4ELgXuAa4Ej33LH+rNVVl662tP6gy102ASLiH8B6TWkfWMH2JwMnd2efZr3oZVWXjRWSfgRcURZddWkDhp/INWufqy5t0OlWSd9ssKpUXX6kkvx1SWPJqpuHG+siYoGkRtXli7jq0voxB32zNrjq0gYrV++YmdWIg76ZWY046JuZ1YiDvplZjTjom5nViIO+mVmNOOibmdWIg76ZWY046JuZ1YiDvplZjTjom5nViIO+mVmNOOibmdWIg76ZWY046JuZ1YiDvplZjTjom5nVSLeCvqSHJc2TNEfS7JL2aknXSXqg/F23sv2JkhZKul/SPt09eDMzWzmtKOnvFRFjI2J8WT4BuCEixgA3lGUkbQdMArYHJgKnSxragv2bmVkn9UT1zv7AuWX+XOCASvqsiHg+Ih4CFgK79cD+zbrNd7E2WHU36AdwraS7JE0vaRtGxOMA5e8GJX0E8Ejls4tK2stImi5ptqTZixcv7uYhmnWZ72Jt0Olu0H9DROwCvA04UtKEFWyrNtKirQ0j4syIGB8R44cPH97NQzRrGd/F2oDXraAfEY+Vv08Cl5A/9CckbQxQ/j5ZNl8EbFr5+Ejgse7s36wHtfwu1new1h90OehLWkPSWo15YG9gPnA5cFjZ7DDgsjJ/OTBJ0jBJo4ExwJ1d3b9ZD2v5XazvYK0/WKUbn90QuERSI58LIuIaSb8FLpQ0DfgzcDBARCyQdCFwL/AicGRELOnW0Zv1kOpdrKSX3MVGxOO+i7WBqstBPyL+COzURvrTwFvb+czJwMld3adZbyh3rkMi4tnKXewXWX4X+1Vefhd7gaRvA5vgu1jrx7pT0jcbrHwXa4OWg75ZE9/F2mDmsXfMzGrEQd/MrEYc9M3MasRB38ysRhz0zcxqxEHfzKxGHPTNzGrEQd/MrEYc9M3MasRB38ysRhz0zcxqxEHfzKxGHPTNzGrEQd/MrEYc9M3MasRB38ysRhz0zcxqxEHfzKxGuhz0JW0q6SZJ90laIOmYkn6SpEclzSnTvpXPnChpoaT7Je3TihMwM7PO605J/0XgYxGxLbAHcKSk7cq6UyNibJmuAijrJgHbAxOB0yUN7cb+zXqECzQ2mHX5xegR8TjweJl/VtJ9wIgVfGR/YFZEPA88JGkhsBtwW1ePwayHNAo0d0taC7hL0nVl3akR8c3qxk0Fmk2A6yVtFRFLevWozTqhJXX6kkYBOwN3lKSjJM2VNEPSuiVtBPBI5WOLaOciIWm6pNmSZi9evLgVh2jWaRHxeETcXeafBTpdoImIh4BGgcas3+l20Je0JnARcGxEPAOcAWwBjCXvBL7V2LSNj0dbeUbEmRExPiLGDx8+vLuHaNZlrSzQuDBj/UG3gr6kVcmAf35EXAwQEU9ExJKIWAr8iOUlnkXAppWPjwQe687+zXpSqws0LsxYf9Cd3jsCzgbui4hvV9I3rmx2IDC/zF8OTJI0TNJoYAxwZ1f3b9aTXKCxwarLDbnAG4APAPMkzSlpnwYmSxpLlnQeBj4CEBELJF0I3Es2lB3phi7rj1ZUoCkdGODlBZoLJH2bbMh1gcb6re703vkVbd/WXrWCz5wMnNzVfZr1EhdobNDqTknfbFBygcYGMw/DYGZWIw76ZmY14qBvZlYjDvpmZjXioG9mViMO+mZmNeKgb2ZWIw76ZmY14qBvZlYjDvpmZjXiYRjMzPrAqBOu7HYeD3/17Sv9GZf0zcxqxEHfzKxGXL1jVgPdrUroSjWC9U8DOuiPOuFK/xjN+oAvIgOXq3fMzGpkUAb9VrSKm5kNRgO6eqc/qmuVU13P2/ovV0G1zUHf+g1fOKw/GywXkV6v3pE0UdL9khZKOqG392/1MOqEK5dNvcW/bRsIejXoSxoK/AB4G7AdMFnSdj2xL9frW2/qzd+2WXf0dvXObsDCiPgjgKRZwP7Avb18HNbEVSvd5t92N/TVkAR1pIjovZ1J7wYmRsSHyvIHgN0j4qim7aYD08vi1sD9bWS3PvBUDx5uf1S3c+6N831NRAzvbiad+W138nfdGT3xvbQ6z/6eX0/k2Z/ya/d33dslfbWR9rKrTkScCZy5woyk2RExvlUHNhDU7ZwH2Pl2+NvuzO+6Uzvqge+l1Xn29/x6Is/+nl9DbzfkLgI2rSyPBB7r5WMw6wn+bduA0NtB/7fAGEmjJb0CmARc3svHYNYT/Nu2AaFXq3ci4kVJRwG/AIYCMyJiQRez6/Zt8gBUt3MeMOfb4t92R3rie2l1nv09v57Is7/nB/RyQ66ZmfWtQTn2jpmZtc1B38ysRgZc0B+sj7pLmiHpSUnzK2mvlnSdpAfK33Ur604s38H9kvbpm6PuHkmbSrpJ0n2SFkg6pqQP6vPuLZLa6kZqLSZpQMXRAXWwg/xR93OAiU1pJwA3RMQY4IayTDnnScD25TOnl+9moHkR+FhEbAvsARxZzm2wn3ePkzQ0erHBrqf/HTqbv6TVJJ0q6eiy3GMXPkknAkTE0hbld7ikbTvYZmjz/Mqe44AK+lQedY+IfwGNR90HvIi4BfhLU/L+wLll/lzggEr6rIh4PiIeAhaS382AEhGPR8TdZf5Z4D5gBIP8vHtDRCyRtJ6kb0narCf3JWlIRCwp8++TNKqFeQuWnc+rJG3fwUeWAr8G3ipph4iIHgz80yV9oxxnK2LpnsCHJa3T3gaV73kq8PmStlIX94EW9EcAj1SWF5W0wWrDiHgcMkACG5T0Qfc9lECxM3AHNTrvVpE0tBrcJb0ZuAZ4AXi8JwJfIzhFxNJSVXc1cBDwz1aV/BsBTdJ7yO6wE9o5liFl+38BNwK3A5+s5tEKSo1zeyPwIUlvKN/BSp+zpCGVC8ZRwA7AfpJWqWxT/XddVdJPyDveS7tyDgMt6HdqGIcaGFTfg6Q1gYuAYyPimRVt2kbagD3vVpG0GnAEsGEleXfgrIg4ISJeaHHgGyrpfcBbK8nvBe6NiHdFxBONEmkX8x8n6fDK8rbAkcAREXFG07aNYL+03AkMiYi/AD8BQtInu3ocbRzX0EhLJK0SEY8CnwUuKMewZGUuriW/peXYV4uIp4DvAYcCO5ZtdgY+U8l3FLBmROwdEfd05WI+0IJ+3R51f0LSxgDl75MlfdB8D5JWJQP++RFxcUke9OfdShHxHNkm9KCkd5bk1wHDYNlFtfFdt2J/S8i2lkslvbEkjwTuKvtZu/zt6sOfjwE3lYsZwObAkkZVYLVE3ahPl/R+4FbgS5JOjIhFZNXgmyW9qWzTrXhXgvpISV8HppQLzA+A+ZLOL9t0+uJayW8G8HlJ20TEFcBtwFGSNoiIeyLiI2TJHuA5YLNGNVdXLuYDLejX7VH3y4HDyvxhwGWV9EmShkkaDYwB7uyD4+uWUko5G7gvIr5dWTWoz7tVmoLf34APAAdK2hI4FThG0qsi4m+SXgV8XNIardgfeSE+BDhe0khgPnBsOZbG3dr+kl7diXwbGqX2x8nRAn5XLlj3An+WtGv5yFJJr5G0Qfn8h8nS8dvJC8bRkg6IiBuBq4BPSVqnuw2ukiaRv8X5ZEeCn5VVBwF7Sjq4bNepuKrsfXYRcDUZi0+XNA74D2Bd8rfeuPB9W/nE92LgWuBNjf1IOqLU8XdORAyoCdgX+APwIPCZvj6eFp7XTOBxsg52ETANWI8sUT1Q/r66sv1nyndwP/C2vj7+Lp7zG8nqmbnAnDLtO9jPuwXf29DK/ObAW8iqr7WBL5agsRZwCtmo+TmyFP6VLu5P1XlgdJnfgGxMPKUsXwf8GJha5mcCr+hE/htU5teqzP8M+H45r5OAHwHjy2/kN8A7ynZbAauRdfi3AB8Hfk8OTbwOcBqwy0qe85A20g4new3uTBY2HgM+WdYdSDYir97ed1j9HkvaO8lqnJ1KfrcCNwFrAuOAPwGHlm13IjsujCn/3v8F/By4mGzrGNXZc/MwDGYDRKlOWFpZfisZCB8o06nAK8gGwTsi4ryyzfbA7Ij4TTf3vx1ZMv0TGYA+DWwGfJRsPP05WfrfBfhdRJzViTwPAd4XEftJ+hDwfmAecBZ5Yb+bDOa/IoPuOGBjlhcI7omIBZK2Br5GBslnJN0P/Dki/l3SqhHxwkqc57LvWdI2wD8j4k/lznQP4DvAweU4fgm8JSJuk/T6tr7jpvx2BdaNiGvL8ghgBnA82SnhcuBK4FlgS7Jb853kBXwKeYfxNmANYC9gnYj4SWfPDTz2jtmAIGk34A3kcyovAOeTJctPkYFhGrAJWcWyP1nV8bOIuLqL+xtB9pS5KiL+qnxwbjhZ3zwX+Bh5x/FRSe8iu9WeExE3Nl+cOtjP1iWvdYB/kAH1vcCryQHH1iRL+xMjYpGkMeSdxM7kBWEnspF3PeBE4P+RXR93BB6JfIdBl0j6CnkRexi4PCK+K2ki8IGIeJ+kLchS9nkR8cXK5xRtBFZlv/73Af8qn/si+W92VURsXdpCbicv3JdExCck7QjsQ14oPiPpOuD3EfHRrp7XQKvTN6uV0lNmfWABcB6wdgkovyOrFJ6KiCfIIBLkm7kuptSDd3Gfa5F16vOAv5fkXcm66zvJ6scfAKNKSf1Sssp1dej4YaWmtoEHyN4vrwUWRMTvgG+TF5d3ATeT1X5flbR5WV41IiYCXybb+T4bEXcBT5Ol5s+RgbjTAb/aC0bSxsqn/dePiC3IO40vliD/CNkr6Lyyr09UA345/2jKb21JnwPeEBE7kCX1HckL5f8AN0q6heyu/J3yd8+S1zzy32F0qcM/krw4dl1X6vg8efLU8xNZKPsaWUe/EVl/fxcwtqy/BfhBmX8FWcK/gnwVo7q4vw+TwXQ9smQ/gyxVr0qWrD9Qtl0FeAfZqDmCTtTdN+1LwN4sbx/4bDmftcryvsDFZX5N8mIH8BXgtjI/lOzC+N/A4SVtVNM+OvweqLSRlOVdybr1cxrnRZbKby/zWwJfAsa1lUcb+a1fjnsBsElJex/wU7KNYjWyOutvZd1o8sLdOKc1yIvdJi35XfX1D9uTJ08vn4BVyt8JZNfDg8ryV0qAGFoC82Ky6gOyjnnHLu5vSPm7P1nafE9Z/m4JcMPI0ucfGoGVbCx+58oG1nKc88meMI+WILoOefdwbtlmOlm/fTjZXnAWMKms+zVwTCNfsuR8Kdngq+b9dfL8NyIvrnuXfCaW7333yjb3Aj9s63trI79NgB8CnyDbVEYC3ySHFGkc4+lkY/VqZfkXwH+SF6sDy3fzCfIO71xgWCt+W67TN+tn2miwPRR4M9lQez9ZCrwhIr6jfEjqJ2SVR5ceiFI+JLSksjwNGEsGoP8l7zZujIgZpZ77LRGxx0rkv6yOW/kC+f8hLxz/Jek/yLaKieTTqFeXc3yEfKL4GPICsDPZcHkT2cvlKvLCNKd0314aES928fzfSlYp3Uze0bw2It4g6WSyveQnEbFQ0kbADhFxfQfnOJb87i4h78DeDnyEbPR+G3A92bvoCLIU//WIuK90T11ENmxfKek0strrO7H8GZbu6+sSzWCcyG6FC1jeFXH3PjqO48uPax5ZB/xtMjj0+XfkqcN/u63ILo8HkdUu3yGrGFYnqx9uAPYq2x7Sgv0J+DqwH9mI+iWym+QrS9A6h6yTBvgGpXS6EvmvRz6TcTdZRTWjsu4G4D/K/KHAh8v8kcCpZX518injC8nA/BXg+qZ9tFnqbj7PNtKOAo6rLP+cvNCtQ5bEDwfW6Cg/lpfg9yPbFBrpXyKftH0FcDR5l3MT8MHynUwHNirbfhL4K1nlsz7ZrtDS35YbcltM0uvIus5dIuK1wL/x0vFieus4DidvVfeIiB3JQPEkpbGtaVuPVNmHJG0oaZfK8jgy2PwSuDSy1P9Dsq734Ij4bVl3cCml/7Sb+98UmE0G+NsihzG4mgz+h0TEleQzJAdLGhYRn4h8CnhFearxV/lE7LXAnIjYBTiZHJ9nv7L5NPLBsd3JgL5LKVXfDrxB0mYR8U/y97sKGYA/TfbyWSY60YAcjegsbSnpk+U4x5ABtuFosmvm38mLzLyI+HsH+W0DXKx86nlpOb/hZdMvkY22m5E9rxYDB0TEj8lqqT3I/5+QhbRngHdGxFORQzO0Vk+XWOo2kT0Oft7OuofJEsSdZdqypL+TbLG/h7z127Ckr0k+7DKPvGto1OvuTfZuuJsMDmu2sa9HKI1k7RzL38iS4x3kQ1LHkyWQ+eQYOJCNZPMrn/k4cFKZ/yVZ+vxN+cxuff3dD9SJrNo4qLI8FTi9sjy0/H0PGYTeVJY7LNm2s7/mh4QOBL7bxnbvJ+ud9yy/xQ07kfeQynyjXWJI+a2eVpY3IkvXpwFblbT3lt/+DHK02U+X398JwJVlm3eRdwUj6WLdffnM58m7qHvIKqPNgf8Dti3rxwH/tRL5fZmselsEfIEsWF0FTCbbB4aRVT3rlfWnNn0/x5LPW/ymbNfu/9tWTC7pt961wKaS/iDpdOVoh1XPRMRu5A/+OyXtV2SJfGdyuOjGIFGfA/4aETtG3jXcWLrvfRb4t8hS02wyYC9TutytGTn8cHvWIAP67sA/yVvN3clSx4eVAz11ZI2IeD3ZN3pGJ7a3isYdVkRcA9wmaVZZ9X/A0EZJMXKMlldExIVk1chfS/pKDSvQKH1HRCgHJ2sMkSBgm1KnXHURWSp9RUT8LbJr6ArF8oeQDgTOk3QceYfyfmBfSVtFxP+QbQZjgHeXj+4K/DoippIPIW1D9sE/Dfi7pJnk7/4TEbEoSrSMlWjHKN1fv0M2HH+ZLPAcRhaAPgX8SNJ3ySqX35bPqCmP5uXjy7mcQv4/3J/8f3QS2b/+J2QB7Z6IeJos7EnSa2J5G8Rs4Kvkcwnv7uD/bff15BWlrhPZo2BPsjfA/wBTSvrDwOZlflXg6TK/I3mxmEc2Yl1T0u8CxjTl/Q7gKZYPW3AvcHbTNmsDf6ks71O2fRh4fUl7keUlyGOAL1a2/xJ5izuKFZf031JZ92fgVX393Q+EiQyyjd4yQ4DPlfn/I8eT2pQMPO8t6ZuQPTjGt2j/x5MFjWvJu4e3k6XfSZVtvkE2rHaqDYiX1m0fUn7L7yn5XEJWbXyMUg9P1m/vBryxLJ9M9rev/gZ/RaWnUFv76uCYmrtOrkYOD7FLWd6SvNv9Wlnehhy/aGwn8xtC9jg6pLI8mQzijS6mewFbVz6zIXmBmEEOY/HZ8n9pVG/9/lzS7wERsSQifhkRXyBvYw+qrm5j/vvkre+OZCt/Y5AlNW3fSLsuIsaWabuImNa0/2fI0tHosvyLiBhLVsO8omz2XCwvJbU3POuLvPQBvtWa1jcfm7uCdUDSiEhLJW1FNq6PLqsPJKtTniGr7d4l6TIyKNweEbO7sL/mkuleZA+SfcnAsxvZpfBR4PByd3o3+W99b3QwfIGWD5IWksZLOojse35C5J3JKWQvnI+RVSDDJX2BrFIZBtxS7ngWAKuVJ1AhqzteWY4VsjS+Um8Ei7xD2kjSPqVk/RzZTvDe0ttmYcn3DZKmRMTvI+InkT2ChjR/dyW/jSWdIGl85F3NbJaP27+UHBdK5MWOiLgpIu4vbRuKvFv6PjnMwnfK9//uiHi4M+fUCg76LSZpa+Wj4g1jybFKGg6p/L2tzK9D/qeD5aNLQpbEjqrkvS7LG7e2LGmvLMGj2SnAGcrRFRv/+ZuDdsMtwAElrzXI4HMr8ASwgfINTMPIu4yqQ0rebySrof7aTv4GlOqaEyRtpxwxcRZZIJgOGSDI6oCLI6t83k/2qPn3iDi9C/urNjQ2AtgI4IWIeCYiZpHVDSPIB5ymkX3FT4yIj0Ynqo9ieXXOm8nS+d3kE6PTyvq/kL/ttcu27yJ/7z+JiFvJi9u55btYixwR80Pk8wG/IkfMXKtxHtFBdY4qI1wqu7PeTN51X1ouKDeTF5tPlM3WJNvLti6//0YV2NLmi0u5oN1IFpxOUA5NMQv4g6RzlSNi7kv2/tlI0g6V7ykq5/BYRBwDfCQi9oueaKxdAQf91lsTOFfSvZLmkqPynVRZP0zSHWSVynEl7STgZ5JuJatuGr4MrCtpvqTfkV30FpN1njNL/reTt6XNziAbxu4o2/2abLi6p3nDyHHKzyEDwB3kyzfuKaW8RmPvFWTPgqr/lfQbsmfJNGyFyr/dM+TF/g1k98SHyAHLGtscA2wl6SsR8VxE/Doi/tRmhitQSpVLSgHzBPIOEvLf/8+SXl+WLwbeRHYNfDAiLouIX3SQ95Cm5Q+Rde+3RNZHzwBekHS88o1o7wJWlzSBvIiNiYhdy/keQlaBHEg2aF5Ndiw4k2zEnUv7hZWXnG/Jb6mkVUp7xbvJF72cRz6lfCxZ3Xo+8G5JvyYvNLPIxtN/tHUXUb7DNciB5PYmG9N3Jx+c2598inm18l2uT3a++CvZsNuuyFeE9r7eqkfytKxOv+X9bvvoXH5Ji+qY6zSRfc/voLShkH26r6x+l2TVx+tasK/R5FOtZ5d/r7PJp2E/TwamXck66Ksp/cQ7kWe1d8525a/I0vp3WD5swe5kVccF5IXuHvKO8ltk18tqPfebye6RI8vyKuQwBXMoT952cEzV9oRdyfaE4WRnhfeW7/vN5F3MN8vxrkX2IlqXbHP4FtkWp6b8XkO2Nwwtn9mTbOTdi6zWuZJ8mIuyv1eTd03n0aInaFv+G+zrA6jT5KDvqXx365HVIPuW5SPIUmK3HpxrClbjyTHXzy7Lq5TgdzDZgHhMCU7XNIL3SuznVWSXx1vJ4REOIauIbiZL1o0OAhsB25b9LGZ5o+3XgP9syvP7lA4PZfmUjo4LeGXT8n5kl863VtJOAyaX+c+U/4N7lOWtSsA/bgX7eCelY0VZ/izw6TL/HrIK6sNkrclGZC+c4/v6N7bC762vD8CTpzpOZC+ROaUE2eipskUX86qWvtcsfxsvUbmM5X3h30ZW4W1fltftZP7N/fpPJkvMa5Q87yGHC5hULl5bNm2/Hlm9dD3Za20L8k7jqG58f6uTPcy2JUvX7y37/zuwU9lmGFkav4h8qvbixgWgks/61e+wBO+Ny/FNB14PfL+y/dvJqpuPU0YCbcrvlV09p96aXKdv1gciX3xxCxn4twP2i4gHu5hXozH1COBaSWeT9c1nkG0Gb1E+SXs1eYdxdPnc/3Yy/2X13MpxbrYFroiIv5c8TydLt7PIoL5H0+efJquWniartRpvPjtU+eQtlfw79aLvyCd0HyXvLn5J1tVfUY6lcX7Pk9VbvyWfiD05ImaW/TSekXiqNHgvLctLI1/XeCU53s9XynGOk7RG5NPJh5Hdao+LMiZOJb/uDXvcCzzgmlkfkrRT5BjyK/u55kHZPkg+yTud7F//dfK1ejuSQ4H8shKgOnzJifK9s2tHxLeUwyhMAy6IiGslfYx8VeFeZdu9yVdXHqd8F22bvbhKF+JfkHcGo4FPRfZY6uo5v498wnVuRLy7pG1PPmh1Z0Sc1kYeyx5Qa0rfiOyQMAf4e0R8o6QfRj4keTFZj38r8PHKhXZIyW7ABFKX9M36UFcCfvlcI+iMKYHsReCyiLgvIn5G9sb6QURcTjak7qh8mYc6CvjFH4Fpko4luzc+VVn+IfCcpNNK75wP5aFoCNn/vL1jfois/7+DfLBvZQK+Kue8j6Q9yQvI64D1lCODEhELyMbjyaqMZ1Q+V32moPFScSnf3nU5GdivAr5c8ofssfZARHyS7P1zXuU4FG107ezvXNI3GyCaS6mSfkiW5q8nhyy4ISI+X9atQjbS7kf2ZFncUdWDpG2BhRHxgqRXkl0tvw4cGBF3KIdWeDP5VOvtZNXHBuTr+07swvm8ZEjndrZZ9n7bUoUyg3yq9SGyTeEU8snxr5E9d1Yju8M+B/wmmgaGk/TKxvfQuHNQDnA3mrzQfZf8Hk8q2+wDTIuI96zs+fVXLumbDQCNB61KKXXzUopdSPYd/wXZWPpBSYeWapRpZOB7ISL+1Mm65jcBsyS9hxwP/hpyeI0pZf01ZF38RGDTiPgIOVREVwK+OhHwRzX2XUrj7wcejHxV4r/IYP9MaVe4ghy25GbynG+MiOeqbQSS3kE+OEV5ZuBm5dhAbyOHUzgV+GREnCRpmHKc/fvJxvBOtzf0dy7pmw0gyqdAPwwsIevpjynpJ5A9VM4lGyCHkaOl3tdBfsvqpCWtDjxGVuXsEhHPStqOfJjpExFxfQm+HwJ+FRGX9cxZvuT4riR75ywmA/s7yAvcArL3z78kDY+IxZL2B2ZHxKPt5LUW2ZOn8dDUTWT10EKyPeT6iDhW0oZkw/M8clykLr2cpb9ySd9sAJC0pqQLyIHLXkv2wR+m5aOh/ogM2E8D74+IfToK+LB8uAFJE8k67W+T1SerlvX3kn3ov1yqRu4n3/TUGwFf5AiwW5L9388lu6JeERHTS8A/huXDWFwWEY+qnfdDRD4BewLZIDu/9KA6ixxW4RfAPpJ+QKm+iogTB1vAB5f0zQYE5dhH1wLPR8TeymGQv0qWWv8rIhYpX+DzfOSwGivKa9mr/cry58i+6RdExK+UrzDcP3KQPsodwBlkL5lv98T5reBY1yOHUziI7CN/HDmkwuPkA2FbAkdHxMuGF1lBnp8lR8bcsSzvR7aJvEgO//DqiHigrOuwp9NA46BvNkAoB9m7jKxquao0QJ5IVntcEBH/6kQey4KYcnyaIBtHN4l8t0Jju3tKvveRXUC/EhF/a/U5dUZplJ5JvsHqi5KmkP3k/xkR3yzbvORC1on8zgcejYjjlc8eHAE8Vno+tdu1czBw0DcbQErf9KPJkTefKf3I50fEXSuZz9fJ0u1TZBfM88lhEG4s60eQQxgMJRs3mwfb61WVPv7zyzEdE2U44s70Amojvy3IgdNOiYj/lrR65ANfg56DvtkAI+ks8tWF7+zi56eSY8ocQj7c9FeymuS1wN6R72NA0tqN+f5A0lhybJ8zS/38SpXw28jvQ+SIn59q5NOd/AYKB32zAab0LnljRFzUxc+fAhARJ5b6+o+QY9ZsTo5bs2/LDraHdKV0b8m9d8wGmIh4oqsBv7id7PmzRanSuIMcrOwMsp97v9aZPv4rmV+t4mCtTtbMgAz6zwOfkLQ2+ZTtH4EnI+JrfXpkndDq6pfB1junI67eMashSa8hhwfelBxrf0r08mv7rG846JvVmKQNIuLJvj4O6z0O+mZmNeI6fTOzGnHQNzOrEQd9M7MacdA3M6sRB30zsxpx0Dezl5G0kaRZkh6UdK+kqyRt1YJ8P93J7R6WtH4b6VMlzZM0V9L88uKUlT2GA8rLYWrJQd/MXqIMK3wJ+WauLSJiO+DT5MtVqtu1+bKSDnQq6LdzXCOBz5DjDr0W2AOY24WsDgAc9M3Mir3I98z+sJEQEXMi4lZJe0q6qbzFa56kL5W3VwEg6WRJR0vaWNItkuaUEvmbJH0VWL2knV+2v1TSXZIWSJrewXFtADwL/K0c098i4iFJW0ha9uIYSWMk3VXmv1ruVOZK+qak15Mvi/9GOY4tynRNOY5bJW1TPnuOpDPK+f5R0pslzZB0n6RzWvA9942I8OTJk6dlEzle/6ntrNuTHJFzdFkeBdxd5ocAD5LvsP0Y8JmSPhRYq8z/rSm/V5e/q5Nj5a9Xlh8G1m/adig5pv6fgR8D76ysuwkYW+a/AnyUfLfu/Sx/CPVV5e85wLsrn72BHGIZYHfgxsp2swAB+wPPADuW87yrsb+BNq3SjeuFmdXTnRHxEEBEPCzp6fKu3g2BeyLiaUm/BWZIWhW4NCLmtJPX0ZIOLPObAmPI9/y+TEQsUb7Ld1dyXP1TJY2LiJPId91+UNLx5HsCdiOD9HPAWcoXrF/RnGd57eTrgZ+Vl2VBvlS+4ecREZLmAU9ExLzyuQXkBa+98+q3XL1jZs0WAONWsP7vTctnAVOAD5KvXiQibgEmAI8CP5F0aHMmkvYE/g14XUTsBNwDrLaiA4t0Z0ScQg4HfVBZdRHwNuAdwF0R8XTkS813K+sOAK5pI8shwP9FxNjKtG1l/fPl79LKfGN5QBaaHfTNrNmN5Hj7H24kSNpV0pvb2f4SoFEC/0XZ/jXkUM0/As4GdinbvlBK/wDrAP8bEf8o9eh7rOigJG0iaZdK0ljgTwAR8VzZ9xlk1U+jFL9ORFwFHFu2h2wXWKt87hngIUkHl89I0k4rOo6BzkHfzF4iskL7QODfS5fNBcBJwGPtbP8vsk79wlj+cpM9gTnKF6wfBHy3pJ8JzC0NudcAq0iaC3yJHOd/RVYFvinp95LmkNU4x1TWn0++6P3asrwWcEXJ/2bguJI+i3yXwD3lXbnvA6ZJ+h15l7PS3UAHEo+yaWbdUt48dTdwcEQ80IfH8XGyZP+5vjqGgWBA1kmZWf9QHnK6ArikjwP+JcAWwFv66hgGCpf0zcxqxHX6ZmY14qBvZlYjDvpmZjXioG9mViMO+mZmNfL/AW3x74JbcGWEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "container.plot.spacegroups();" ] }, { "cell_type": "markdown", "id": "10131a1b-3d2e-4b5e-8f8f-993256a0486c", "metadata": {}, "source": [ "### E-V Curves" ] }, { "cell_type": "code", "execution_count": 8, "id": "70e779bf-296a-4843-ad12-127c389337e1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEMCAYAAADNtWEcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAe40lEQVR4nO3dfXxdVZ3v8c+XGDGtD4EB1AZqkKtFEWkwV3HgzkDVKcpTRB7Hjk/zsnfm6lyRsTOtcofWlw54o4jeUa+gjt4RFcUSQdCCKDrigLQECLV2lCclZQQHozxECenv/nH2KSfp2Sf7JPuck5z9fb9eeTVnnX32/mVzWL+911p7LUUEZmZWPHu0OgAzM2sNJwAzs4JyAjAzKygnADOzgnICMDMrKCcAM7OCekqrA6jHPvvsE729va0Ow8xsQdmyZcuvI2Lf6eULKgH09vayefPmVodhZragSLq3WrmbgMzMCsoJwMysoJwAzMwKygnAzKygFlQn8GwMDY8yuGk7O8bGWdLdxZqVyxjo62l1WGZmLdfWCWBoeJR1G0cYn5gEYHRsnHUbRwCcBMys8Nq6CWhw0/ZdlX/Z+MQkg5u2tygiM7P5o60TwI6x8brKzcyKpK0TwJLurrrKzcyKpK0TwJqVy+jq7JhS1tXZwZqVy1oUkZnZ/NHWncDljl6PAjIz211bJwAoJQFX+GZmu2vrJiAzM0vnBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF5QRgZlZQTgBmZgXlBGBmVlBOAGZmBeUEYGZWUE4AZmYF1dIEIKlb0mWSfippm6RXtjIeM7MiafWSkB8Dvh0Rp0h6KrCoxfGYmRVGyxKApGcCfwK8BSAiHgceb1U8ZmZF08omoOcDDwL/LGlY0mckLW5hPGZmhdLKBPAU4HDgUxHRBzwKrJ2+kaTVkjZL2vzggw82O0Yzs7bVygRwH3BfRNyUvL6MUkKYIiIuioj+iOjfd999mxqgmVk7a1kCiIj/AH4paVlS9CrgJ62Kx8ysaFo9CuhvgEuSEUB3AW9tcTxmZoXR0gQQEbcC/a2MwcysqPwksJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkVlBOAmVlBOQGYmRXUU9LekPS7GT4r4P6IeGG+IZmZWTOkJgDgzojoq/VhScM5x9NwQ8OjDG7azo6xcZZ0d7Fm5TIG+npaHZaZWdPVSgBvyPD5LNvMG0PDo6zbOML4xCQAo2PjrNs4AuAkYGaFU6sP4GxJR9b6cETclXM8DTW4afuuyr9sfGKSwU3bWxSRmVnr1EoAPwM+LOkeSR+StLxJMTXMjrHxusrNzNpZagKIiI9FxCuBPwUeAv5Z0jZJ/yBpQXb8LunuqqvczKydzTgMNCLujYgPJR3Cfw68HtiWVwCSOiQNS/pmXvtMs2blMro6O6aUdXV2sGblskYf2sxs3pkxAUjqlHSCpEuAbwH/Tr6dv+8ix4RSy0BfD+edfCg93V0I6Onu4ryTD3UHsJkVUq3nAF4DnAkcB/wY+AqwOiIezevgkvZP9v9B4Oy89lvLQF+PK3wzM2oPA30v8CXgPRHxUIOOfyHwd8Az0jaQtBpYDbB06dIGhWFmVjy1OoGPiYiLI+IhSUdJeiuApH0lHTjXA0s6HnggIrbU2i4iLoqI/ojo33fffed6WDMzS2TpAzgX+HtgXVLUCXwxh2MfCZwo6R5KzUsrJOWxXzMzyyDLZHCvB04EHgWIiB3UaLLJKiLWRcT+EdELnAF8NyJWzXW/ZmaWTZYE8HhEBBAAkhY3NiQzM2uGLAngq5I+DXRLejvwHeDiPIOIiOsj4vg892lmZrXVGgUEQER8OBkS+jtgGfAPEXFtwyMzM7OGmjEBACQVvit9M7M2ktoElGVqhmZM32BmZo1R6w7gKElX1HhfwItzjsfMzJqkVgI4KcPnH88rEDMza67UBBAR329mIGZm1lxZhoGamVkbcgIwMyuoLHMBHS/JicLMrM1kqdjPAH4m6X9LelGjAzIzs+bIsiTkKqAPuJPSusD/Jmm1pDlPCGdmZq2TqWknIn4HfJ3StM3PpTRD6C2S/qaBsZmZWQNl6QM4QdLlwHcprQXw8oh4LXAY8J4Gx2dmZg2SZS6gU4GPRsQPKgsj4jFJb2tMWGZm1mhZZgN9U433rss3HDMza5YZE4Ckh0kWg6nwW2Az8LcRcVcjAjMzs8bK0gR0AbAD+BKlCeDOAJ4DbAc+BxzdqODMzKxxsowCOjYiPh0RD0fE7yLiIuB1EXEpsFeD4zMzswbJkgB2SjpN0h7Jz2kV701vGjIzswUiSwJ4I/AXwAPAr5LfV0nqAt7ZwNjMzKyBavYBSOoA/joiTkjZ5If5h2RmZs1Q8w4gIiaBlzUpFjMza6Iso4CGk6UhvwY8Wi6MiI0Ni8rMzBouSwLYG/hPYEVFWQBOAGZmC1iWJ4Hf2oxAzMysubJMBvdCSddJuiN5/VJJ5zQ+NDMza6Qsw0AvBtYBEwARcTulp4HNzGwBy5IAFkXEj6eVPTHXA0s6QNL3JG2TtFXSu+a6TzMzyy5LJ/CvJR1E8tSvpFOA+3M49hOUJpO7JVldbIukayPiJzns28zMZpAlAbwDuAg4WNIocDewaq4Hjoj7SRJJRDwsaRvQAzgBmJk1QZZRQHcBr5a0GNgjIh7OOwhJvZTWHb6pynurgdUAS5cuzfvQZmaFlWU9gD2BNwC9wFMkARAR788jAElPp7Te8FnJ2sNTJLOPXgTQ39/vyefMzHKSpQnoG5QWgNkC/CHPg0vqpFT5X+Ini83MmitLAtg/Io7N+8Aq3Up8FtgWERfkvX8zM6styzDQH0k6tAHHPpLS1NIrJN2a/LyuAccxM7MqstwBHAW8RdLdlJqABEREvHQuB46IHyb7MjOzFsiSAF7b8CjMzKzpUpuAJK0AiIh7KQ3/vLf8g9cIMDNb8Gr1AXy44vevT3vPk8GZmS1wtRKAUn6v9trMzBaYWgkgUn6v9trMzBaYWp3Az0+WglTF7ySvD2x4ZGZm1lC1EsBJFb9/eNp701+bmdkCk5oAIuL7zQykmYaGRxnctJ0dY+Ms6e5izcplDPT1tDosM7OmyvIcQFsZGh5l3cYRxicmARgdG2fdxhEAJwEzK5QsU0G0lcFN23dV/mXjE5MMbtreoojMzFqjcAlgx9h4XeVmZu1qxgQg6VpJ3RWv95K0qaFRNdCS7q66ys3M2lWWO4B9ImKs/CIifgPs17CIGmzNymV0dXZMKevq7GDNymUtisjMrDWydALvlLQ0In4BIOl5LOAHwcodvR4FZGZFlyUBvA/4oaTysNA/IVmjd6Ea6OtxhW9mhZdlUfhvSzocOILSU8DvjohfNzwyMzNrqFrTQR+c/Hs4sBTYAYwCS5MyMzNbwGrdAZxNqannI1XeC2BFQyIyM7OmqDUVxOrk32OaF46ZmTXLjH0AkjqA44Deyu0j4oLGhWVmZo2WZRTQlcDvgRFgZ2PDaY5zhkb48k2/ZDKCDokzX3EAHxg4tNVhmZk1VZYEsH9EvLThkTTJOUMjfPHGX+x6PRmx67WTgJkVSZYngb8l6c8aHkmTfPmmX9ZVbmbWrrLcAdwIXC5pD2CC0rMAERHPbGhkDTIZ1R9iTis3M2tXWRLAR4BXAiMRC7+W7JCqVvYd8jr3ZlYsWZqAfgbc0Q6VP8CZrzigrnIzs3aV5Q7gfuB6Sd8C/lAuXKjDQMsdvR4FZGZFlyUB3J38PDX5yY2kY4GPAR3AZyLi/Dz3n+YDA4e6wjezwssyGdwGAEnPKL2MR/I4cPKA2SeA1wD3ATdLuiIifpLH/s3MrLYsK4K9RNIwcAewVdIWSYfkcOyXAz+PiLsi4nHgK8BJOezXzMwyyNIEdBFwdkR8D0DS0cDFwB/P8dg9QOXg+/uAV8xxn5kNDY96URgzm1G9dUVedUvljAVlPTnXVVkSwOJy5Q8QEddLWpzDsauNu9xtpJGk1SQL0CxdujSHw5b+A6257DYmJkuHGx0bZ81ltwE4CZgtQI2a3qXeumJoeJR1G0cYn5jctf26jSOp26eZPmNB2Wz3lyZLArhL0v8C/iV5vYpSp/Bc3QdUjr3cn9KaA1NExEWU7kLo7+/PZSjqhiu37voPWjYxGWy4cqsTgFkGWa9yZ3s1PDQ8yoYrt/KbxyYA6O7qZP2Jh1T9bCOnd6m3rhjctH1X5V82PjHJ4KbtddUttWYmmM3+0mRJAG8DNgAbk9c/AN4y5yPDzcALJB1IaaGZM4A/z2G/Myp/qbKWm9mTsl4VZ70anp4kjjl4Xy69+ZdTKt6x8QnWfK36lXet6V3mmgDqrSt2jI3XVZ5mppkJ6t1fmiwPgr06Iv5nRBye/JxFaeTOnETEE8A7gU3ANuCrEbF1rvs1s3TnDI1w0Lqr6V17FQetu5pzhkbq3ketq+JKta6Gy8pJYnRsnKCUJC658Re77R9gYmdM+WzZfJreZUl3V13laWaamaDe/aXJkgDWZSyrW0RcHREvjIiDIuKDeewzi+6uzrrKzeaboeFR+t5/Db1rr6J37VUs33ANQ8OjNT9TbiopV4zlppJ6k0DWq+IsV8PVkkStarvaPtMqyzymd6m3rlizchldnR1Tyro6O1izclldx601M8Fs9pcmtQlI0muB1wE9kj5e8dYzgSdyOXqLrD/xENZ87TYmdj75VevcQ6w/MY/RrWbpanVWVjaFPKurEwnGHpvYre18ehMM1G4iKWtkU0k1S7q7GK1SYVdevdbblFHtyvfMVxxQtcM0j+ld6q0ryud+rqOAps9YUNbMUUA7gM3AicCWivKHgbNyOXqL5PUfyawetTor+5+395T28rHxJ6+mp7edD27aXrOJJO17nFdTSXdX55T4KssrrVm5bMrfBLtfvaYliWo691DVK99GTu8ym7pioK8nl7qkGTMWaKY53iR1RsRExeujgDMj4h0NjayK/v7+2Lx5c6779PMANhuzGXZ40LqrU2eifc6znjZjRdjT3cUNa1dw4NqrUptJBNx9/nF1H//O815X89iVhoZHq14VD5562G7/78z0/9f0jmIoJYk3vKyHq26/P9MoIJuZpC0R0T+9PMtUEBOSllMaoXMapSGgG2t+aIHIa8yuLVxDw6Osv2LrrivavRZ1cu4JtSua2Q47rHUFnqUppLxNravmWp2DeTWV1HNVPNPVcK19eb6uxqvVB/BCSkMzzwT+E7iU0h3DMU2KreHyGrNrrZd2pVnrCrTalexvHpuY8aHA2bal11qLIssdQLlyX7Ny2W59AJDeRFKWZ1NJXs0cee/L6lPrDuCnwL8CJ0TEzwEkvbspUTVJXmN2rbWmV+SjY+Os+dptbL73Ib6+ZTT1Dm/DlVunVP5lE5ONaUuvdQU+vQ9gusq283JcWR+UquSZcK1SrQTwBkp3AN+T9G1Kk7W11bJZabfS3Ys8HHQhWX/F7hX5xM6oWtlWjkOv9eBfrYuA2a4ql+UKPMsoIPBVs+UjNQFExOWU1gJeDAwA7waeLelTwOURcU1zQmyctFvpR37/BEPDo/4fbB7I0tlabURKLTvGxqs+UFSpUW3pta7AXalbs834IFhEPBoRl0TE8ZTm67kVWNvowJphoK+HxU/dPQemPXFozZXXg0vTLenuqnmF39kxc1v6qiOW7rri75BYdcRSN63YgpNlLqBdIuIh4NPJT1v4bcrVo/sBsqlnUrB6R9tk7Wzda1Fn5nmcym3pg5u2V23+k2DwlN2HM07ntnRrB3UlgHaU5WlFq67aMNo1l93G+iu28tvxJ9uugVmNtsna2XruCYdUbcqbrkPivJMP3XW8auPPK983a3dZ5gJqa3nN3VFE1YbRTkwGY+MTuyb2WrdxpGonbXnbWk1tWed4GejrYfCUw+jp7kKURsR0dkzdpquzg4+c9uSV/UBfD+edfOiuz/R0d7nyt8Ip/B2Ap4WYvSyP8I9PTKYObYTaTW31dLZO70DN0jTlTlcrusInAHBFMFtpwyHrUaupbS4PLvm/qdnMnABsRmlX03Ot/GcabQPubDVrJCeANpTnBHdpT9nC3O4AsowCMrPGcgJoMzNNcFfvLJZpT9muv2Jr3ZV/eTZLM5sfnADaTK0J7jbf+1Dds1imPWU7Nj5BT8oQ2r0WdfL7iZ0154E3s9ZzApimUesDlPdbWWHmuXBFWdqomtGx8aojamD2K0KlLfhx7gml1ZI8sspsfnMCqJDn+gBDw6NTZmusJus88vWoZ4WlyjjSpD1lu9eizhmH0LrCN5vfnAAqzHZ9gKHhUd678XYem9g5q+PmuSbrMQfvm3qln6bWLJbVnrLt7NCuq3wPtzRbuJwAKsxmfYCh4VHefemtqUv0ZTEZwYFrr8qlqeR7P32w7s/UmsXSD8qZtS8ngAqzmRdow5Vb51T5l1VOnQCzbz6pZxK7rH0Qvso3a09OABWqdWoCPPb4k+sDvPHif+OGOx9qWAyzXZKy3Mk8UzLyhGdmVqaY49OczdTf3x+bN29u6DGmT1tc1tXZwf57PY2fPfBoQ49f1pPMWT9Tk0uWzuZKF56+3JW/WcFI2hIR/dPLCz8b6HQDfT0s3nP3G6PxicncKv8LT1/OPecfR0+NpqXRsfFdzUJrLruNoeHR3bYZGh5lzWW3Za78e7q7XPmb2S5OAFU0ajGYZ+7ZwT3nH7erEq42FXU1E5PBhiu37la+4cqtM86BX+YHscxsOieAKhqxGEznHnD7hmOnlFXOSQ+1h2NWu8qf6cq/Q/Jc92aWqiWdwJIGgROAx4E7gbdGxFgrYqkmrTN4LgZPXV61PG11qrlyZ6+ZzaRVdwDXAi+JiJcC/w6sa1EcVU1fLarWlXkWM3W8VnsAbbrurs5MZQACV/5mNqOWJICIuCYinkhe3gjs34o4ahno6+GGtSu4+/zj2DnLkVJ7CFYdsXTGp4hnmrqhcw+x/sRDditff+IhdO6h3bb9qEf6mFkG86EP4G3At9LelLRa0mZJmx98sP6nXPMw2z6BnQFfvPEXnDM0UvX98txDtfR0dzF46mFVK/SBvh4GTz1syrq2aduamU3XsOcAJH0HeE6Vt94XEd9Itnkf0A+cHBkCacZzAGVpzwPMhgR3n3fcbuVHnv/d1Kt/t+GbWV7SngNoWCdwRLx6hoDeDBwPvCpL5d9M5wyN1D2hWi3V/rqZmn5c+ZtZo7VqFNCxwN8DfxoRj7UihjRDw6O5Vv7T911eE6BWt7If2DKzZmjVXED/BOwJXKvSCJsbI+KvWhTLFNUeuMrD9LUG0m55/MCWmTVLSxJARPyXVhw3i6zTKtRDZBvqCW76MbPmmQ+jgOaNavPt5EGQaZUuN/2YWTM5ASSyDMmcrSzrhLnpx8yazQkgkbWJplHc9GNmzeYEkKh3IfU8uenHzFrBCSAx1/l+suhMOdvHHLxvw49tZjadE0BisgnPok2kdAbMZiF3M7O5cgJI1FqdKw+L0i7/adwCNGZmtTgBJLKuzjUbF56+nMfSLv9pzAI0ZmYzcQJITF+dKw8i2yLsHv5pZq3Qqqkg5qWBvh4G+noYGh7lrEtvndO+Vh2xlA8MHLrr9V6LOqs+Zbyocw+PADKzlvAdQBWDm7bP+rOdHeLC05dPqfwBzj3hEDo7tNu2/3jyS2d9LDOzuXACqGIunbITk8FZl97Kked/d8rUEgN9PQyeMm3xllO8eIuZtY6bgKpY0t015wfDRsfGd00tUa7ky01MZmbzge8AqsirU3Z8YnJOzUlmZo3kBNBgHuNvZvOVE0AVeV61e4y/mc1XTgBV5HXV7imezWw+cwKoIo+r9p7uLk/xbGbzmhNAFXlctd+wdoUrfzOb15wAqhjo66GrxuRtM9lrUWeO0ZiZNYYTQIrz5vCE7rknHJJjJGZmjeEEkGKgr2dWJ+fIg/Z204+ZLQhOADVccPryurY/8qC9ueTtr2xMMGZmOXMCqGGgr4cX7Lc407YXnr7clb+ZLShOADO49uyjOfKgvVPfX3XEUu45/zg3+5jZguPJ4DLwlb2ZtSPfAZiZFVRLE4Ck90gKSfu0Mg4zsyJqWQKQdADwGuAXrYrBzKzIWnkH8FHg74BoYQxmZoXVkgQg6URgNCJua8XxzcysgaOAJH0HeE6Vt94HvBf4s4z7WQ2sTl4+Iqmeyfr3AX5dx/btyOfA56DM56G45+B51QoV0dwWGEmHAtcBjyVF+wM7gJdHxH/kfKzNEdGf5z4XGp8Dn4Mynwefg+ma/hxARIwA+5VfS7oH6I+IImZlM7OW8XMAZmYF1fIngSOit4G7v6iB+14ofA58Dsp8HnwOpmh6H4CZmc0PbgIyMysoJwAzs4JqywQg6VhJ2yX9XNLaVsfTLJLukTQi6VZJm5OyvSVdK+lnyb97tTrOvEn6nKQHJN1RUZb6d0tal3w3tkta2Zqo85VyDtZLGk2+D7dKel3Fe+14Dg6Q9D1J2yRtlfSupLxQ34V6tF0CkNQBfAJ4LfBi4ExJL25tVE11TEQsrxjrvBa4LiJeQOn5i3ZMiJ8Hjp1WVvXvTr4LZwCHJJ/5ZPKdWeg+z+7nAOCjyfdheURcDW19Dp4A/jYiXgQcAbwj+VuL9l3IrO0SAPBy4OcRcVdEPA58BTipxTG10knAF5LfvwAMtC6UxoiIHwAPTStO+7tPAr4SEX+IiLuBn1P6zixoKecgTbueg/sj4pbk94eBbUAPBfsu1KMdE0AP8MuK1/clZUUQwDWStiRTaAA8OyLuh9L/IFQ8hNfm0v7uon0/3inp9qSJqNz00fbnQFIv0AfchL8LqdoxAahKWVHGuh4ZEYdTav56h6Q/aXVA81CRvh+fAg4ClgP3Ax9Jytv6HEh6OvB14KyI+F2tTauUtc15yKIdE8B9wAEVr8tzDbW9iNiR/PsAcDml29lfSXouQPLvA62LsKnS/u7CfD8i4lcRMRkRO4GLebJ5o23PgaROSpX/JRGxMSku/HchTTsmgJuBF0g6UNJTKXXyXNHimBpO0mJJzyj/Tmm21Tso/e1vTjZ7M/CN1kTYdGl/9xXAGZL2lHQg8ALgxy2Ir+HKlV7i9ZS+D9Cm50CSgM8C2yLigoq3Cv9dSNPyqSDyFhFPSHonsAnoAD4XEVtbHFYzPBu4vPT/AE8BvhQR35Z0M/BVSX9JafW1U1sYY0NI+jJwNLCPpPuAc4HzqfJ3R8RWSV8FfkJp1Mg7ImKyJYHnKOUcHC1pOaVmjXuA/w7tew6AI4G/AEYk3ZqUvZeCfRfq4akgzMwKqh2bgMzMLAMnADOzgnICMDMrKCcAM7OCcgIwMysoJwAzs4JyAjBrU5L+j6RbJP3XirIXSfq/ki6T9NetjM9azwnArA0lT4PvR+nhr+PL5RGxLSL+CjgN6E/5uBWEE4DNG5JeLykkHZy87pb0P3I+xo/q2Pb66YuESDpL0idn+Nwjs42vXpJ6JY1XPPkKQEQ8CjwXuB74+LTPnAj8ELhOUleyWMzjkvZpUtg2TzgB2HxyJqWK6YzkdTeQawKIiD+uY/MvV8RSdkZSPp/cGRHLKwsk/RGwCHgYmDK9QURckZyHN0bEePLZQk2CZiVOADYvJFP4Hgn8JU9WuucDByVXqIPJdmdLuiP5OSsp65X0U0mfScovkfRqSTckywC+vOI4j1T8/qZkrvzbJP1LlbAuA46XtGf5OMAS4IfV4pj29/Rq6vKM75G0vp54Ja2S9OPk7/90natVnQN8GNhKaWW8chxHS/q4pE8DV9exP2tHEeEf/7T8B1gFfDb5/UfA4UAvcEfFNi8DRoDFwNMpVW59yXZPAIdSuqjZAnyO0nzvJwFDFft4JPn3EGA7sE/yeu+UuK4CTkp+XwsMpsVReYwqsb8HWJ/8PmO8wIuAK4HO5DOfBN5UJb4px6kouynZ3z8Bb89w/u8pnwv/FOfHdwA2X5xJaflOkn/PrLLNUcDlEfFoRDwCbAT+W/Le3RExEqW577dSWgM2KFXUvVX2tQK4LCJ+DRARacspVjYDlZt/asWR1UzxvopSork5ad9/FfD8jPv+APD+ZH/bKCU7s9203XTQtvAk7dUrgJdICkrTeAelq94pm9bYzR8qft9Z8Xon1b/nItvqT0PABZIOB7oi4paMK609wdQm1qfVGa+AL0TEugzH2iWZ/vlk4ChJn0iOO1LPPqw4fAdg88EpwP+LiOdFRG9EHADcDSwFnlGx3Q+AAUmLkmGOrwf+dZbHvA44LUk+SNq72kbJFf71lJpoyp2/WeL4FbCfpD9K+hCOpz7XAadI2q8cn6TnZfjch4ATkvPYCxyG7wAshROAzQdnUlrCstLXKTW53JB0lA5GxC3A5ymt2nQT8JmIGJ7NAaO0SNAHge9Lug24oMbmX6ZUkX4l+eyMcUTEBPD+5P1vAj+tM76fUOrIvUbS7cC1lIZ1ppK0AlgcEddV7OdXwOK0BGfF5gVhzBawZGTSNyPiJXPczz1Af7lPxIrBdwBmC9sk8KzpD4JlVX4QDOik1P9gBeI7ADOzgvIdgJlZQTkBmJkVlBOAmVlBOQGYmRWUE4CZWUE5AZiZFZQTgJlZQTkBmJkV1P8Hhkv5e+WKkGEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "container.plot.energy_volume();" ] }, { "cell_type": "markdown", "id": "28c73c13-37b6-46fd-80ce-8cbfe4f5ab0f", "metadata": {}, "source": [ "### Custom Plots from Data" ] }, { "cell_type": "code", "execution_count": 9, "id": "c3521262-079a-45b7-b50f-43578068e3ac", "metadata": {}, "outputs": [], "source": [ "df = container.to_pandas()" ] }, { "cell_type": "markdown", "id": "734ab66b-1725-41b0-a96a-d25049469167", "metadata": {}, "source": [ "### E-V by Concentration" ] }, { "cell_type": "code", "execution_count": 10, "id": "55049592-b4b7-48a3-8f80-f6bc2a0ac3bc", "metadata": {}, "outputs": [], "source": [ "df['concentration'] = df.atoms.map(lambda s: (s.get_chemical_symbols()=='Li').mean())" ] }, { "cell_type": "code", "execution_count": 11, "id": "552bd06b-39ff-40ac-96e9-bf171a21c588", "metadata": {}, "outputs": [], "source": [ "df['energy_atom'] = (df.energy / df.number_of_atoms)" ] }, { "cell_type": "code", "execution_count": 12, "id": "e2f40ee4-818f-4e40-84b6-7844fca037a7", "metadata": {}, "outputs": [], "source": [ "df['volume_atom'] = df.atoms.map(lambda s: s.get_volume(per_atom=True))" ] }, { "cell_type": "code", "execution_count": 13, "id": "483e90a9-c4a6-4ec6-aba3-c017450e08e9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEMCAYAAADNtWEcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABBe0lEQVR4nO3dd3hc1Zn48e87Xb13WZZtyb1hbLCpphoImJYQExJCSMKSkCUsm98u2exmk2xLQpLdTQVCQiALOAkJNbaJY0wx4G7cu+WiYvVeRlPO748ZyZJVPJJGGkt6P8+jR7pn7txzZjw+79xzz32PGGNQSik1/lgi3QCllFKRoQFAKaXGKQ0ASik1TmkAUEqpcUoDgFJKjVMaAJRSapyyRboBA5Gammry8/Mj3QyllBpVtm3bVmWMSTu7fFQFgPz8fLZu3RrpZiil1KgiIid6K9chIKWUGqc0ACil1DilAUAppcapUXUNQCmlws3j8VBcXExbW1ukmzJkLpeL3Nxc7HZ7SPuP+QBQX9fA0cPHaWt1kz95Atm5mZFuklLqPFJcXExcXBz5+fmISKSbM2jGGKqrqykuLmbSpEkhPWdMB4CK8ir+65v/y7o17wKQnJrEL579PjNmT41wy5RS54u2trZR3/kDiAgpKSlUVlaG/JwxfQ1g9459nZ0/QE1VLU/95Le43e4Itkopdb4Z7Z1/h4G+jjEdAE4UFfco+2jbHhobmiPQGqXUeBMbG9uj7IknnuC5556LQGt6GtNDQFOnT+5RduU1l5CQGB+B1iilFDz44IORbkKnMX0GMHv+DL7w0KexWq2d2/d+8S7s9jEd95RS57Fvfetb/OAHP4h0M4AxfgaQmJTAlx65j5tuuxZ3m5vcvGz99q+UUkFjOgAA2B12CqaGNiVKKaXGkzE9BKSUUqpvGgCUUmqcGvNDQEopFSktLS3k5uZ2bj/66KMRbE1PGgCUUmqY+P3+SDehXzoEpJRS45QGAKWUGqc0ACil1DilAUAppcYpDQBKKTVOaQBQSqlxSgOAUkpF2Jo1a5g2bRoFBQV897vf7fG4MYaHH36YgoIC5s6dy/bt28NSrwYApZSKIJ/Px0MPPcTq1avZt28fL774Ivv27eu2z+rVqzl8+DCHDx/mqaee4ktf+lJY6tYAoJRSA+CuraZu/y5qdm2lbv8u3LXVQzre5s2bKSgoYPLkyTgcDlasWMGrr77abZ9XX32Ve++9FxFh8eLF1NXVUVZWNqR6QQOAUkqFzF1bTXPxCfyedgD8nnaai08MKQiUlJQwYcKEzu3c3FxKSkoGvM9gaABQSqkQtZ4uAXNWegfjD5QPkjGmR9nZa/uGss9gaABQSqkQdXzzD7U8FLm5uZw6dapzu7i4mOzs7AHvMxgaAJRSKkQWu2NA5aFYtGgRhw8fpqioiPb2dlauXMny5cu77bN8+XKee+45jDFs3LiRhIQEsrKyBl1nh4hmAxWRROBpYDZggPuNMR9Gsk1KKdWXqMwcmotPdB8GEgtRmTmDPqbNZuOnP/0py5Ytw+fzcf/99zNr1iyeeOIJILCI/E033cSqVasoKCggOjqaZ555ZqgvJdD03saWRoqIPAu8Z4x5WkQcQLQxpq6v/RcuXGi2bt06Yu1TSo19+/fvZ8aMGSHv766tpvV0CX5POxa7g6jMHJxJKcPYwoHp7fWIyDZjzMKz943YGYCIxANXAPcBGGPagcEPpCml1AhwJqWcVx3+UETyGsBkoBJ4RkR2iMjTIhITwfYopdS4EskAYAMWAL8wxlwANAOPnb2TiDwgIltFZGtlZeVIt1EppcasSAaAYqDYGLMpuP0SgYDQjTHmKWPMQmPMwrS0tBFtoFJKjWURCwDGmNPAKRGZFiy6BtjXz1OUUkqFUaQXhf9b4PngDKBjwOci3B6llBo3InojmDHmo+DwzlxjzG3GmNpItkcppSLhXOmgn3/+eebOncvcuXO55JJL2LlzZ1jqjfQZgFJKjWsd6aDXrl1Lbm4uixYtYvny5cycObNzn0mTJvHOO++QlJTE6tWreeCBB9i0aVM/Rw2NBgCllBqAhqKTVH+0B29LK7boKFLmzyZ+Ut6gj9c1HTTQmQ66awC45JJLOv9evHgxxcXFg38BXWguIKWUClFD0UkqNm3H29IKgLellYpN22koOjnoYw401fOvfvUrbrzxxkHX15WeASilVIiqP9qD8fm6lRmfj+qP9gz6LGAgqZ7Xr1/Pr371KzZs2DCous6mAUAppULU8c0/1PJQhJrqedeuXXzhC19g9erVpKSEJxWFDgEppVSIbNFRAyoPRSjpoE+ePMkdd9zBb3/7W6ZOnTrous6mZwBKKRWilPmzqdi0vdswkFitpMyfPehjhpIO+jvf+Q7V1dV8+ctf7nxOODIjRzQd9EBpOmilVLgNNB10uGcBhVtY0kGLSMM56hGgzBgTvvMRpZQ6z8VPyjuvOvyh6G8I6GgwS2efRGRHmNujlFJqhPR3EfjOEJ4fyj5KKaXOQ32eARhjjnXdDq7gZevyeM3Z+yillBo9zjkLSET+BvgO0Epg4XaCvycPY7uUUkoNs1CmgX4NmGWMqRruxiillBo5odwIdhRoGe6GKKXUeHWudNAdtmzZgtVq5aWXXgpLvaGcAXwd+EBENgHujkJjzMNhaYFSSo1joaSD7tjvH//xH1m2bFnY6g4lADwJvAXsBvxhq1kppUah0x8d5ujazbjrmnAmxjLluovInF846OOFkg4a4Cc/+Ql33nknW7ZsGVL7uwolAHiNMY+GrUallBqlTn90mAOvvIvf4wXAXdfEgVfeBRh0EOgtHfTZi72UlJTw8ssv89Zbb4U1AIRyDWC9iDwgIlkiktzxE7YWKKXUKHF07ebOzr+D3+Pl6NrNgz5mKOmgH3nkEb73ve9htVoHXU9vQjkD+FTw99e7lOk0UKXUuOOuaxpQeShCSQe9detWVqxYAUBVVRWrVq3CZrNx2223DbpeCCEAGGMmDakGpZQaI5yJsb129s7E2EEfs2s66JycHFauXMkLL7zQbZ+ioqLOv++77z5uvvnmIXf+EMIQkIjYReRhEXkp+PMVEbEPuWallBplplx3ERZ79+/NFruNKdddNOhjdk0HPWPGDO66667OdNAdKaGHyznTQYvI04AdeDZY9BnAZ4z5wrC2rBfhSAdt/H7c9Y0Ynw9HXCxWpyNMrVNKjUYDTQcd7llA4RaWdNBdLDLGzOuy/ZaI7BxiGyPC2+amZs8hKnfsA2OIzkwj+4pFOBPjI900pdQokTm/8Lzq8IcilFlAPhGZ0rEhIpMBXz/7n7daK6qp3L4Xgmc9Lacrqd5zCOPX2xuUUuNPKGcA/4/AVNBjBBaBmQjcP6ytGiZtVbU9yhqPF5O2YBb2IazpqZRSo1EoAWADUAhMIxAADgxri4aRIzGuR1lUeipWh17TVkqNP6EMAX1ojHEbY3YZY3YaY9zAh8PdsOEQnZFKbF5W57bV5SRtwUwstlDioFJKjS39rQmcCeQAUSJyAYFv/wDxQHS4GiAiVmArUGKMuTlcx+2NPSaanKWLcdfW4/f6cCbE4Ygf/PxdpZQazfo7A1gG/ADIBX4E/DD48yjwT2Fsw1eB/WE8Xr9sLicxWenETcjSzl8pdV4IJR3022+/zfz585k1axZXXnllWOrtb0nIZ4FnReROY8wfw1LbWUQkF/gY8B8EAotSSo0roaSDrqur48tf/jJr1qwhLy+PioqKsNQdSiqIP4rIx4BZgKtL+XfCUP//AP8A9Lw6GyQiDwAPAOTl5YWhSqWUGrxDG/bw4cq3aapuIDYlniUrljL1stmDPl4o6aBfeOEF7rjjjs4+MD09fWgvIiiUVBBPAJ8E/pbAdYBPEJgKOiQicjNQYYzZ1t9+xpinjDELjTEL09LShlqtUkoN2qENe1j/1CqaqhrAQFNVA+ufWsWhDXsGfcze0kGXlJR0r/fQIWpra1m6dCkXXnghzz333KDr6yqU6S+XGGPmisguY8y3ReSHwJ/CUPelwHIRuYnAmUW8iPyfMebTYTi2UkqF3Ycr38bb3j0dtLfdy4cr3x70WUAo6aC9Xi/btm1j3bp1tLa2smTJEhYvXszUqVMHVWeHUKaBtgZ/t4hINuABhpwh1BjzdWNMrjEmH1gBvKWdv1LqfNZU3TCg8lCEkg46NzeXG264gZiYGFJTU7niiivYuXPoGXlCCQBviEgi8DiwHTgOvDjkmpVSapSJTek9b1hf5aHomg66vb2dlStXsnz58m773Hrrrbz33nt4vV5aWlrYtGnTgBLY9aW/+wCyjDFlxph/Cxb9UUTeAFzGmPoh19yFMeZt4O1wHlMppcJtyYqlrH9qVbdhIJvDxpIVSwd9zK7poH0+H/fff39nOmiABx98kBkzZnDDDTcwd+5cLBYLX/jCF5g9e/AXnjv0mQ5aRFYDSQQ65jXABmOMt9edR0g40kErpVRXA00HHe5ZQOEWlnTQxpgbRcQFLAVuB34gIicJBIM1xpiTYW21UkqNAlMvm31edfhD0e8sIGNMG8EOH0BEJgE3Aj8VkUxjzOCXwVFKKRVRfV4EFpGfisilXcuMMUXGmJ8bY5YDlw1765RSSg2b/mYBHSYw7HNcRL4nIvO7PmiMaR/WlimllBpWfQYAY8z/GmOWAFcCNcAzIrJfRL4pIkO7+0AppVTEnfM+AGPMCWPM94wxFwCfInBBeMSydyqllBoeoeQCsovILSLyPLAaOATcOewtU0qpceJc6aDr6+u55ZZbmDdvHrNmzeKZZ54JS7393Qh2HXA3gXTNm4GVwAPGmOaw1KyUUiqkdNA/+9nPmDlzJq+//jqVlZVMmzaNe+65B4fDMaS6+5sG+k/AC8DXjDE1Q6pFKaXGiA/f3MyfnniN6ooaUtKTuePB5SxZNvgZ8aGkgxYRGhsbMcbQ1NREcnIytjAsZdvfjWBXdan8MqDQGPOMiKQBscaYoiHXrpRSo8iHb27m2e++QLs7MAmyuryGZ7/7AsCgg0Bv6aA3bdrUbZ+vfOUrLF++nOzsbBobG/nd736HxRJKKrf+hXIN4F+BfwS+HiyyA/835JqVUmqU+dMTr3V2/h3a3e386YnXBn3MUNJBv/nmm8yfP5/S0lI++ugjvvKVr9DQMPgMpB1CCSG3A8uB5mBjS+lnBS+llBqrqit6Hw3vqzwUoaSDfuaZZ7jjjjsQEQoKCpg0aRIHDhwYdJ0dQgkA7SYQogyAiMQMuVallBqFUtKTB1QeilDSQefl5bFu3ToAysvLOXjwYOc1g6EIJQD8XkSeBBJF5IvAX4FfDrlmpZQaZe54cDkOZ/eZNw6ngzseXN7HM86tazroGTNmcNddd3Wmg+5ICf0v//IvfPDBB8yZM4drrrmG733ve6Smpg7ptUA/6aC77RSYEno9gTWB3zTGrB1yzYOg6aCVUuE20HTQ4Z4FFG5hSQfdVbDDj0inr5RS55Mlyy46rzr8oegvG+gb53pyKPsopZQ6P/V3BnCZiPQ3t0mAmf08rpRS6jzWXwC4NYTna0popZQapfq7E/idkWyIUkqpkTX0e4mVUkqNShoAlFIqwu6//37S09OZPbv3xeaNMTz88MMUFBQwd+5ctm/fHpZ6Q8kFdLOIaKBQSqlhct9997FmzZo+H1+9ejWHDx/m8OHDPPXUU3zpS18KS72hdOwrgMMi8n0RCf1uCaWUGoP+/Mpall1yF/Pyl7Lskrv48ytDv0XqiiuuIDm573QSr776Kvfeey8iwuLFi6mrq6OsrGzI9YayJOSngQuAowTWBf5QRB4QEU0Ip5QaV/78ylq+/djjlJWUY4yhrKScbz/2eFiCQH96SxldUlIy5OOGNLRjjGkA/khgVbAsAhlCt4vI3w65BUopNUr8+Pu/pK3V3a2srdXNj78/vOnRQkkZPRihXAO4RUReBt4isBbARcaYG4F5wNcGW7GITBCR9SKyX0T2ishXB3sspZQaCadLKwZUHi6hpIwejFDOAD4B/LcxZq4x5nFjTAWAMaYFuH8IdXuBvzfGzAAWAw+JiN5ZrJQ6b2Vmpw+oPFyWL1/Oc889hzGGjRs3kpCQQFZW1pCPe85kcMaYe/t5bN1gKzbGlAFlwb8bRWQ/kAPsG+wxlVJqOD38D1/k24893m0YyBXl5OF/+OKQjnv33Xfz9ttvU1VVRW5uLt/+9rfxeDwAPPjgg9x0002sWrWKgoICoqOjeeaZZ4ZUX4dzBgARaSS4GEwX9cBWAt/gjw21ESKST+BC86ZeHnsAeAACiyIopVSkfOy264DAtYDTpRVkZqfz8D98sbN8sF588cV+HxcRfvaznw2pjt6Ekg76R0Ap8AKBBHArgEzgIPBrYOlQGiAisQQuMD8SvNjcjTHmKeApCKwHMJS6lFJqqD5223VD7vDPF6FcA7jBGPOkMabRGNMQ7JBvMsb8DkgaSuUiYifQ+T9vjPnTUI6llFJqYEIJAH4RuUtELMGfu7o8Nuhv5BKYw/QrYL8x5keDPY5SSqnBCSUA3AN8BqgAyoN/f1pEooCvDKHuS4PHulpEPgr+3DSE4yml1KCEsjTuaDDQ19HvNQARsQJfMsbc0scuGwZUWxfGmA0ErikopVTEuFwuqqurSUlJCcvNVZFijKG6uhqXyxXyc/oNAMYYn4hcOOSWKaXUeSo3N5fi4mIqKysj3ZQhc7lc5Obmhrx/KLOAdgSXhvwD0NxRqBdtlVJjgd1uZ9KkSZFuRkSEEgCSgWrg6i5lBtAAoJRSo1godwJ/biQaopRSamSFkgxuqoisE5E9we25IvLPw980pZRSwymUaaC/BL4OeACMMbsI3A2slFJqFAvlGkC0MWbzWdOjvMPUnhHR3tJGc1UDVoeN2LRELFZd8VIpNf6EEgCqRGQKwbt+ReTjBLN4jkYNp2vY8txaqo+VYbFamPmxiym4ch6OmNDnziql1FgQylffh4AngekiUgI8AoRnReIR5vP6OPDmVqqPBeKX3+dnz2sfUnOiPMItU0qpkRfKLKBjwLUiEgNYjDGNw9+s4dHe1Erprp7Zq+tLq8mcOTECLVJKqcgJZT0AJ3AnkA/YOq4FGGO+M6wtGwb2aCfJEzM4ve9Et/KY1IQItUgppSInlCGgV4FbCVz4be7yM+rYHHZm37qk23h/zrzJpORnRLBVSikVGaFcBM41xtww7C0ZIckTM7n2sbtpLK/F5rQRn5WCMzYq0s1SSqkRF0oA+EBE5hhjdg97a0ZIbFoCsWk67KOUGt9CCQCXAfeJSBHgJpDC2Rhj5g5ry5RSSg2rUALAjcPeCqWUUiOuz4vAInI1gDHmBIHpnyc6fgBdI0AppUa5/mYB/aDL33886zFNBqeUUqNcfwFA+vi7t22llFKjTH8BwPTxd2/bSimlRpn+LgJPDi4FKV3+Jrg9atdPa2ttY8fWPWxYv5GU1GQuuWIh02dPjXSzlFJqxPUXAG7t8vcPznrs7O1R4911H/K1h77Vuf2bp1by5LOPM2PetMg1SimlIqDPAGCMeWckGzIS6usa+OkPf9WtrK62nh2bd1M4cwo2eyizYpVSamwYVyuh+Hw+Wppbe5S3trTibupZrpRSY9m4CgDJKUl85v6Pdyuz2W0UFuRrPiCl1Lgz7sY8lt18NTarlZf/uIbU1GTuvP1GZs2bpsM/SqlxR4zpf0aniKwFPmGMqQtuJwErjTHLhr953S1cuNBs3bp1yMfxuD3UlFVhfIb4lASiE2PC0DqllDo/icg2Y8zCs8tDGQJK7ej8AYwxtUB6mBp1g4gcFJEjIvJYOI4ZCrvTTkZ+FplTsrXzV0qNW6EEAL+I5HVsiMhEwnAjmIhYgZ8RSDY3E7hbRGYO9bhKKaVCE8rA9zeADSLSMS30CuCBMNR9EXAkuOYwIrKSwL0H+8JwbKWUGvVaGltobWjBYrPgiokiKsyTVUJZFH6NiCwAFhO4C/jvjDFVYag7BzjVZbsYuDgMxz0nT7uHsqNlVJ6qIDoumuzCHBJ0XWCl1Fnc7nb27tjP8aJTJCbGM2v+dDKy+h8Brz5ZyenDxfh9fjILskmdlEnHWuqh8vv9nD5UTPnhEnweH5YoB16vn5ypOeRMmzCUl9RNnwFARKYbYw4EO3+A0uDvPBHJM8ZsH2Ldvb0jPYaWROQBgmcceXl5PZ4wGPs/3Mcfvvu7zu2Js/O567EVxKfEh+X4Sqmh8Xl91JXX4mn3EhXrIiEtsd/93fWNtFXX4m/34EyKx5WWgsUy9Fnuf3ntLb7xtf/q3F5y2UL+7QePkZ6V1uv+lUWneeU7z9Pe6gbAardy67/cQ9bU3AHVW3m0lC2/XoO7oQUAV2IM+dcsYMPv32XZ39xEYnrSIF9Rd/2dATxKoOP9YS+PGeDqIdZdDHQNZbmcCTJnKjLmKeApCMwCGmKdNFQ3sOqJP3crO7HnOCWHiolfopcglApFeVkFx4+eIiY2mslT84mO7jk04XF7qD5VSVNVPbEp8aRMSMPucvSyXzvuhlbsUQ6csVHUVdSx4Y/vsnXVFhwuB4uXLyE9L53CRVNxRrt6PN9d38CpdR/grqoLFIiQt+xy4vKyh/QaS06U8vh//Lxb2YcbtnJg96E+A0DR1kOdnT+Az+Nj95qtZBbkIJbQzwJKdhzp7PwB2uqaaSmrIXf6BGrLaoc/ABhjHgj+viosNfW0BSgUkUlACbAC+NQw1dWptbGFlvrmHuVNtU3DXbVS5wWf1wN+g9XRszMOxd6P9vPI3/wL5acrAVjxmdt58JHPkpx6plPyeX3se+sjNjy7trNsyT1XM++GhVi73HNTX1rNzpfe5fS+E8SmJ7DoM9ezb9shNr22EYDWplbWv/AW139uGaWHSpg0f0qP9rRW1pzp/AGMoXzTTqJSk7H1EjBC1dLUQl1tfY/y+rqGPp/TVNPYs6yqAb/xY8UaUr3GGOqLe46yt9U24oiNwhUz+Nd0tnOeI4mIVUSWi8jDIvJox89QKzbGeIGvAG8C+4HfG2P2DvW45+KMcjH1ou6J3yxWC/GpOvyjRpf2tnaqiquoK6/B6/Wec3+/10tbTTVNRUdoOn6YlvLTeFvbBlRnS3MrP3786c7OH2Dlb19m9/buczfqymr44P/WdSvb+MJ6astqzrS/xc3W//srp/edAKCpop7D7+xi+1+29ai3pqyaqlOVPcoBfG3uHmWeppZAoBuCjMxULrviom5lNruN/Ml9j8FPuXh6j7LZ11+I1Rpa5w8gIky4sGeG4vSZE/F7vKTkpoZ8rHMJZRbQ60AbsBvwh61mwBizClgVzmOeS1xyLHOvmIPNbuPg5gMkZSaz6MZFJKYmjmQz1DhWVVGN1WYlKTmxx2NNNY20NbUQkxhHVHx0n8coPVLCX59dy8l9J8idPoGF1y8ke2ouyVnJfT7H09hIS3FR57avrRgAW1RmyG2vqahmx9bdPdtTXNZt293Uit/XvbswxtDWeGZYo6W2gepj3Z/XWtdIam4qNV0CBUB0QgwxSbG9tsmZ1HMCR0JBHvaYvt+/UMSnJPLV//cFoqJcrF/3PhMm5vDoPzzA1JkFfT4na3ou1z98G5v/8C4+r48Lb7uEvHkDz56fM28yjeU1HHl7FyIw+cq5JE3MYNLimTh6GUYbrFACQK4xZm7Yaowwq93GhJkTaahpJH1CGt52H5n5maRNDMu9bUr1qaaqltf/+CbPPLUSl8vJQ3/3Oa6+4QpiYqMxfsPJXcd46xdv0NrQwsLbLyGrMAdntJP4rGRc8WduWKyvrOf5b/+WhqrAUMTR7UeoKavhqhVXkZiegKWPb5uepp5DF576arxJSdgczpBeQ3xiHAsWzeGD97rfkZ+VldFtOzY1HldcdLcO3xnjIq7LbDu704Hd5cDT1t5ZVn20lEseuJmiXUV43IFv8MlZycQmxJLdx4XUqPQUcq6+mPKNO/G2ukkonEjK7MI+34eBmDZ3Gt/897/jyw9/luiYKNJyM/pNG+NwOSm8ZCYT5k7C+E2/Qbw/UYmxzLvzcgqWzgMgJiUBizX8qdtCCQCrReR6Y8xfwl57hCRlJnPJ7ZfSVNuEzWnH726nqbKe6JQ4zQmkQuZpacH4/VgdjpDG09e/+R4//M9fdG5/4+//i58mxnPFtZdQW1rN6h++hM/jY/EnrqB85xGOv7UDgMS8dJZ8/kbiMgJj7DVl1Z2df4fashrqq+ppqmkiPq33Kc3S26wYsQxoimJ8UgJffvg+ThwvpuTUaUSEu++5lemzun8rjk9L5Kav3clff/46DeV1xKUncM2Dt5CQceY6QUxqAhd8cimbnz3TteQtmkbu1Bz+5n++ROmRwJyQpIwkUrJTiOtjlp7VbiexYBLRmWkYrw97TDQWuz3k13QuCenJJKT3fWbVG1cY5utbrFbiwnSxty+h9HYbgZdFxAJ4CEzfNMaYUT1obrFacUU7ObZhD3vf2Ijf42PixdOZectiYlP0ngDVN7/PR3tdLa0VJRiPB2t0LFEZOTji4vp8TltLG3948Y0e5W+v/YArrr2Exso6fB4fMclx+FrbaKqo69yn7mQFpbuOMe26CwFwRPUMNiKCM8qJ3dV3x2eLjcddWwn+M0MzzpR0rPaBDSnMvGAGT/zyu5w8XkJsXAz5U/JIykrpsV/WtAnc+Z3P0trQQlR8NNEJPdOu5C4sJDYjiaaKOlzx0SROSMMZE0VGTBQZ+aEPTQE4YnsfIlJ9CyUA/BBYAuw258ocN8pUHS1j1582dG4f37ifmNQEZt28OIKtUiOpqriS00fLOLL1MLHJscy4ZOY5b7TxNDbSUnK8c9vX0kTr6RKszsl9ngmIRcjKSmPf7oPdytOD3yw7hgoSMpJoOl3b4/mVh0o6A0BabjqLbrqILas2dz4+/5oLyJ6aTVRc30MOzoQEYArepgaM34c9Nh5bbN9Bqy82u42JMyYxcca5x7ajE2J67fjPHMtO6uQsUidnDbgdauhCCQCHgT1jrfMHqDxc0qPsxOYDFF49H8cQpo+pkVdWcpqD+4/SWN9EWmYqM+dMIz4+lsrjpzl9qAQRIbMwh9T8M2PVVcUVHN5ymHW/frOzbNuqLXz2e58ns58Oyd/ec9aJr7UJn7utzwDgdDlZcc+tvPfOZtrdgTHvxKQELr18EQBJuaksuvMydr25jbzrL6DqSPfPZva8yZ1/O6IcXPOZaylcOJXq0mriU+JJzU0lc9K5O1FnQkIwECgVWgAoA94WkdVA5yffGPOjYWvVCInP6Dm+lpibhtWh1wFGk6rKGg5s2Y9UNRNT24K71XAECxOyMzm26QAHN+ylsaoBm9PObd+8h4wp2VQdLaWipJpd63Z0O5anrZ3ju4r6DQDSy8VFsdkQS/8XHefMn8kvnvgPDh44is1qZcbsqUybVQgELojOv/li8uZNxufx0lbbRMmOIwBMvHgGGTO73wUfkxjLDL1xUQ1RKD1dUfDHEfwZM9Km5pCQm9p504U9yknO/Cm0N7URlajjiaNF/elqGj88QlvwBr+8lHikpJ53V76PWC3MumIOFScrOLb1MIc27CUhPZGNT68mf9nCHlMVAfxeX7/12aKisUXH4W05c9OPKz0be0z/qcWjE2NZuHQRM+dNRyxCdFL34RdHlJPM4EyX9IJsmm66CBEhNj0RmyN8FzWV6hBKMrhvA4hIXGDTjJlbZqNT4ilcOp/WuiaM32CMYfsLb7Hw3uuYsKAw0s0b94wxtNfX42lswPi92GMTsMXGYnN2n7LobWjt7PxtLgcxyXHsX7Ml8KAHjr61g2k3XczxHUdpqm7A3dRKS20jnoYWZl4+m/defLvzWBablYlz8vttly06mqjsCfhaWvD7vFidLmzn6Pw7iEWICSHnlN3pIGmCTk1Ww+ucAUBEZgO/BZKD21XAvSNx1+5w87S0s3/NZprPnlJ3olwDwDBoaWymvrweR5SDlJxz383Y3lBPS3ERxh/4Ru6pryE6J79HAHC6zmwnT8yg4lBxj2M1nKogKSeF6cGbAO3RTo6//REzbr+Ma79wAwc/2E90QjQLP3Yx2YU552ybPToae/TQbjRSKtJCGQJ6CnjUGLMeQESWAr8ELhm+Zo0Me5SDjBl5HHtvT7fyxAm9J3pSPTU1NXPkYBF1tfVMyMthcuHEXueVn9p/km2rt7Dv3d3YHHYuX3ElFyxb2G9eE29zU2fn36GtugJ7bDxW55nRyLRJWcSkJdBcWU9bQzMJOWk97jCNSoln0cJp5MzMwxHtYtGnr+XDp1ez6/l1pBRkc+1nriajIBdbP9MolRprQgkAMR2dP4Ax5m0RGRPrKFqsFgqvmk/l4RIag1PvJiycSuqUc38DVNBQ38gv/uc3PP/rlwBwOB38zxP/Rpo9lvIjJWRPzyNr+gQ8Xi/7Nuxhz/qdALS3uln3zF9Izk5h2uIZfVfQ28Qz48eclTU8Jjmeyx+6lZKPjlJz/DQTL57O6b3H8QSzMroSopl8ySyS884MqWTPm8L13/gUzdUNuOJjiM9KxubUzl+NL6EsCv8ysJ3AMBDAp4GFxpjbhrdpPYVrUfiztdY301RRi8VmIz4zCXtUaLfFj3dbN37E/Z/8areyzOx0HvnMPRS9G0gONvu6BRQuncurP3iJ6rMyHC665WKWPfCxPo/vrqul+eTRbmWuzByi08893bGhrIa6kiosFiEhN4249MQQX5VSY09fi8KHcgZwP/Bt4E/B7XeB+8LXtMiLSoghqp+bVVTvKsure5SdLq3AkXhmbHzPX7czZfF0EjMSewSA3u4e7cqRkAh5k2mrqgS/F0diKvaExJDaFp+VTHw/idGUUqEFgGuNMQ93LRCRTwB/GJ4mqdEiPbXnfRQzZhWSmpZM5/2uBhpKq5l37QJO7TvVuVhGcnYKky6Y3OP5XYkIzsRkHPGJGGPCktxLKXVGKAHg6/Ts7HsrU2OQ3+OltaYOX1sbYpHAFMiUJNqb24j1Wvj6Nx7ix//7DM1NLeRPnsBDX7wHX31r5/OzpuVSfbiEwmsv4JPf/BTVJdXYXXZyCnNIzg4tr7lYLL2uH6qUGpr+1gS+EbgJyBGRH3d5KB449+oTKmIOHzzGzm17cbvbmbdgFjPnTO22PmpTXSNtzW3EpybgcPZ/b5+7vh5fcx3e5vpANkl/Em0WC021LXgaWkk41cJ/PfZVPPixtXqxVbXiT4olKSeVnOm5xCfHcXjtNmbeeBGZUycwcfbAc6MrpYZHf2cApcBWYDnQdYmeRuCRYWyTGoKD+45w/ye/SmND4H49m93G0y/8NwsumovX4+Xk3hNs/fMmSg8WkztzIkvuuJScPvKs+zwevM0NeJvqADA+H576KmxR0YgIR9/ZxYybLuLUlkO0VNaROWsiU66cS+PpWtwFWdQVlVG+7RAFS+cRn6nj8Uqdb/pbE3gnsFNEXjDGdK6tJiKXAf8BPDQC7VMD9M66Dzs7f4BJk/OoOFlObV4N7mY3q372GnXBKa8H3t9L+bEy7v2v+3vNtW58PnytPW/89rlbiU3PIHFCGjv/8C4ZMyeSc0EBPq+X+IxkEnJSiU1LpLmqnqjEWBInpGHvJYWxUiqyQkkF4RGR+QQWbL+LQF6gP/X7pFGsqqKaXTv2cezICQqnTWb2/Bmk9HKxMxSnyyqoLK8mLT2ZpsYWik+WEBsXS/HJUurrGpk6YwoXXjwXxyAX5+61/ZVnltK7+57bmJeVT9HL2zjx2g7m3XQRmZOzOgMABBYSqTxV2WsAsDrsWByOHtkvrS4XzhgXF37qGsr2FHF633His5LJnjsZR/DGrrTCHNJCuKNWKRU5/V0DmAqsAO4GqoHfEbhv4KoRatuIa2ps5r+/+ySv//FMeuC777uDv3vsb3BFhZYeuq6mnsaGRpqbW3n1pdW0t3mYd+EsfvKDp1l281W889cPOFEUSFUgInz/p//KspvD95Zeff2lJEVHM2NyPrGOaDatfAcAv8/Ptlc+YMEdl3Jo88FuCc/6WmNULFai0rNobG4GE0iaZnE4sccFgkVsWgKFV82n8Kr5YWu/Umrk9HcGcAB4D7jFGHMEQET+bkRaFSFFR0926/wBVj77Mrd/8mNM72ch6Lqaeg7uP0JtTT2uKCdVFdVEx0Qze94Mdm7bw3tvbaS8rJLYuNjOzh8Cyc5++oOnmVQwEZfLQW5edreLtYMxfXI+NX/ZDSUNHK8p7fF4bXEVqbmpVBwvB2DuNReQPjGjx34d7LHxxBfOwNfaglgsWKOisYa4fqxS6vzWXwC4k8AZwHoRWQOshLE9G6+tta1HmTGm1/IOpcWn2fT+dn70n7/ggb/9DP/93SfxegKTpBYtuYCrrr+M99ZvRETweDw9nl9dVcvLK9/gpRde58FH7uMT9ywnPmHgqzR1qDxYTFNFPSIWEjOSKD9r0Zu0/AwmLppGxfHTpE/MYMKsib0uMdiVzRWFzTX0NU6VUueXPr9uGmNeNsZ8EpgOvA38HZAhIr8QketHqH0jKm9SLtm5Z9YhnVKYz+e+uIKJk7rPkqmuqqW6qgafz8eRQ0Xs/mgfD/ztZ/jD8692dv4AWz7cgdVqYf7CORhjiIpy9fiGf91NV/L+O5txu9v53+89xe4d+wbVdndTG02VddSVBO62bSyvJXNyJq64Mx13XEo8Uy6ezqzLZ3PVZ65l1hVziA8hNbFSamwK5SJwM/A88LyIJAOfAB4D/jLMbRtxGZlp/Pjp/+TXv3iehQvm4a9qo2R/Me//7j0u/tjF2GIdHNx7hNraOt54eS3zFswiNy+LY0dOUFp8mge/+jneW7+RP7+ytvOYVZU15E3MYc78Gbzy+1U8+o0v8ervV1F+uorrb7oSu9PB8WOnOvffvfMAly69OOQ2+9ztNJVXU3OigsPv7GHyFXMoCj52cM1mFtywEHtcNM7YKDIKsonXnDhKqaABrX1ojKkBngz+jElTZ0zh6998mOf++VkqTgTGyTe99iHHdxdx1Reuo7q6lq9/9d+xO+xcde2lPPbwv3c+98P3tvLvP/on9u4+yPGjJwGIcrn4yQ+e5vZP3sg1y64kPjGOq6+/jHZ3O//365d48TfdJ1RNmzGF0qOlVBdXEZMYQ3ZBTp8pk911DZS+t4WWskoQYfqlBVjjoylYOo+i9/fg9/poq23C7/aQlJ6onb9Sqhtd/LYXdeV1nZ1/h/Ki0/jbfax5/S0ALrxoHm+8vLbbPsYYNr63lTtXfIxf/fwFvvzo59i/+yCf/vwnuOSKhcycPY2klMTO/e+8+2befGN957z9y69eQoozjie/+vPOpQovvmUxS+++mtik7ktUGr+f6j2HAp1/oHIaDxeRclEiDWXVFF59AWIRTu89QV1xJVOumBPOt0gpNQZoAOiF1dZ70jGrzYo1mJDM4/Hg7GX6pMNhJ29SLj955r9ITErgsqUXUVfbyKSCicTEdL+QOmvudF58/UmOHT6BK8rJpLw8fvsvv+m2Tu2m1zdSeOFUpl08vdtzvW3tNBb1XPmqvbae3AuncvAvW2muasAe7WTx52/UzJhKqR40APQidUIac66cy+53dnWWzV06D4vTysduvZb1f9nAji27efxn32Ljhm10rKngcDqYNrMAi1iorarj4N4jpKYnk5ae2qPz75CXn0t2Vganj5Ry7IN9XHzdhfiAt3//Nj5PYK5+fVV9j+dZ7FZcack0new+1VMcdlprmrnq0U/gbmrBEe0iJjUhTO+MUmosOeeCMMNSqcjjwC1AO3AU+Jwxpu5czxuuBWF6U19Vz8l9Jyg5VEzm5CyqT1Wyc+0Orv/7m6msrGXdm+9RMG0SEydN4K0338VqtTJn/kyyczOIjo6mvd2N1W4nIT6WKVP7T4B25MP9vPm/L3duRyfFMnHxDNavXI9YhE9/616mLprW7Tl+j4fm0jJK3tmGry1wp250TgaJM6cRk5mCQxe1UUoF9bUgTKQCwPXAW8YYr4h8D8AY84/net5IBoCutr6xiTVP/rlze8riqSxZcQVWq4WamnpsNitejxexCE6Hk5ioKOKT4ohPOvcUy6aaBv70r7+lsbL7t/wFd1zK+j+8y9JPXc3MS2eSmN49HYXx+2kuOYnxGrxuL2K1YBEfrrQ0HAmDS12hlBqbhrIiWNgZY7pOId0IfDwS7QhVyaHuY+1HNx5i7uXzqCmvpbGmgZyCHCwWC4mZSezZsIeP1u0gMSORqz91DVMWFGCz9/42N5bXUrzrGO0t7h6PxSTE8Klvfpq03DRizroADIEc+a60DJpOHMG0uzGALTkNW0zPfZVSqjdDyzsQHvcDq/t6UEQeEJGtIrK1srJyBJsFzfVN1JbXMvPK7jNo5i9byLa12zix7zjpOWnUltbQ7m6nurQKp9OOCJQeKuHFf3+ek/tO9Hpsv9/PkXd3cXT9R0y7bFa3xyxWC1mFOeTPmdRr59/B5ooifvJ04qZMI75wBjFZuVhsurC5Uio0wxYAROSvIrKnl59bu+zzDQKLyzzf13GMMU8ZYxYaYxampaUNV3O78fv8FO08ypGthzm+uwh3i5t7v/95xGpFrBamXFhA0c5jLL55CVv+vIn0iekkJscjbi/p2Snc+ZXbuPPRO/F5fVSXVNHbMFt7cxvF2w/TUtOIHbjg5otIyEwiZ9ZEbv3nT5Gan9mzYb2w2O3YY+KwRcUgumSiUmoAInINAEBEPgs8CFxjjGkJ5TkjdQ2g9HAxNScr8Xp8OOOiOL73OK4YF4ULp+J02amrbKCqpIqi7UcouLAQ09rO1pff73z+9CvnYHc5aGprZ8KMPGZfMSewmlaQ3+ejrqSKigOn8Ht9lB84RUNZDWlTc5i0ZBZZs/OH/TUqpcaP8+oagIjcAPwjcGWonf9IKT9Wxp//83edi5cnZqcwJdihb121hdiUOAoXFJI3cyIedzt5s/Io2nGUebcuQfyGfet2cOCd3Vz08cvJmJpLYnYKTdUNxKUl0t7ipqmqnobSKrY8u7bzzGDSJTPBGNyNrTpfXyk1YiJ1H8BPASewVkQANhpjHoxQWzr5vF62v/IB7a1unLFRFCyZTlJuGl7glf8JpGyISYxl25tbuOmBm8nMy2DPm9uITU2k4kQ5Rz86xtWfvoZNL7yF3+/HZrPicNpBLDTXNLD9xfXEZSRR9P7ebsNCRR/s47KHbiV5Ygau+OgIvXql1HgTqVlAfSfXjyBPm5fqU5UkZicz5bLZbHzlQ65/4EbW/XoNl3/iClJzUmmqayIuKQ5ntJP3//Qe6ckJHHx3A9Ovmkd8ajw71++kYMkMLFYrsanxeDxekrJTOLZhN1VHSply6UwO/XV7j7qN36+dv1JqROmdwF152ihcPB1js/LX36wluyCbuvJapsyfQk1ZNe/94d3OXS/7+OXMXDIbb0sbbDvMoXd3M/PGRXz4ygdc/dlrcTrtYMDf6qbySAkVB4uZdcMCvDW1xKYn0lRR13kssViI1bt1lVIj7HyYBnpeaKut58Sf32HyoqmBC7bG4PP5qDxZSeHCqezdsBcAm93GsnuvIyUhhij8ZOVnkDwhDb/fj8ViYcqCQhLSE6k+XEzz6Roay2tpqqgjZXIWzig7TUXHmXvTQuIyAjdrOeOiWPLFG4nTsX+l1AjTM4Cgttp6cq5aiLexmsSMONLy0pm2aBo503JpbW2n8MJC8qbnkZGfwYl12yktO7P4+txbL+XEvhM0VDew5NbF7Pnje5TtLiIhN43CpfPwuj3EZ6fga2zA+Pz46qq5aMWluJva8La0kV6QNeSlIJVSaqA0AAQ546JoLQvctJWcmsL8xdM4tXEfdbuPcuF9NxDnsLP3jU0cjYtmwc0XgRylobQagFNbDjDvzsuxu+xUHjhFakEO1UdLqS+uxGKz0PE2JxfmEZ+RgLetEeNpJjYlGmtuKvbYmEi9bKXUOKZfOzuYQOZNsdmpOFTGiff34vf6yJ43hR2vfUjpvsACL22NLXzw4ttkXXDmOranpY2qA6eoKSojNi2RY+/tImvOJJyxUbgSYnDGRxOXnojNYaW9vgJ/azPG68HbVI/f3QR+f69NUkqp4aQBIMhiD6ZQsLk4sflQZ3lKQQ4nPjraY39P25kF3idfPpeYtETsUS7qiitxxLjwe/3MvPlinLFRJOak4ohx4m1p7tHZexrq8Hnah+dFKaVUPzQABNmiY7A4nAg+YtPOzMhxN7aQkN4zu6YzNpBnf9YtS0ifnkv5vuPYHXba6luYfv0iJiwsJCEnldi0RGJS4vE21mO8nh7HwWJBRP8ZlFIjT3ueIKvTRdykQqLSM5l23QKswQyeVYeKWXz3UizWM29V7px8YpPjyF8yg8xZE1n/+B9Im5rLntc+IGt2PmIRXPGxxKUnYXc58LnbaC0rxu9pxxrVfa5/VEY2FkfPlcWUUmq4RSwX0GCMVC4gv99P+b6TNFbUEpeRxN5VG5l2w8XUldXgjHHhinHRWFyJPdpJ5ZESUidlEZ0SR2t9Myn5mdhcThK6TOv0tjTTcGQ/AM6UdMRqxfh8WKOiscfGY9UAoJQaRudVLqDzXXttPS6nobWpmnbjpq2mmQOvf8j0GxZRX1pF9f4TpE/NJTEvjYwZeYF8/saQPCGNmLSew0UWuwOLw4m/3Y27ugIAsdqITUzWzl8pFTE6BNSL9sZmKrfsofV0FS0nS5h144XUnapk4y9XUXW4lPicFBJykvDW1FD5/mbqd+7G6m2j/INttFXX4fd6ux3PYrcTmzcZi9MFgNhsxOROxBat0z+VUpGjZwC98Hu8eJqag3978JScYvG9V+O32nC67Ji2VqxeD36BzMXz8bc3g1jIuvQC3LV1uKtLicnNwxZ9ZjEXW3QM8VOm4fd4EKtNv/krpSJOzwB6YY+JhkCWUgA8TS0kZCbi8LTgLi7GIoaWskosVhuIH29THd7GajwN1bjSEvC5W2ksOoLP3X2pR4vNji0qWjt/pdR5QQNAL6LSk0m7YGbndsqcqZRv2knN3sM0FZ+masc+jN9Pa2U1mDOBwtvUgL/djT0+EePz4vf0XOtXKaXOFzoE1AuxWomblIUrNRF3XSP22Biqdx3stk/90ZNkXDwPv8/X/cl+gwTX5RWrvr1KqfOXngH0wtfWSmvpCfC7ccTH9bmfPS4Gi0061+K1OJxYnE489TW40jKxOp0j1WSllBow/YraC7/XA8bgbWnA6kzCHhuDPTYaT9OZ1SvTLpyFKzkeX2sTztQMxGIJ3ElstRIzYRK26BjEoou0K6XOXxoAemGx2QMXgf1+jK8Jv89J7nWX0HyyHEdyLM74GDB+2mvK8bnduFLS8La342ttxRoVjSMhMXCBWCmlzmM6BNQLqyuK6OwJYLHgb3djtYPVYSV+Sjb+5hpaSo7TUnoSxII1KpqWshKsNhsWhwOxiI79K6VGBe2peiEiWFzRRGdNABEsDifttdX4Wpsx/jMXfT0NdURlZOOprw0s8i6C1RWNxapDP0qp858GgD44YmLxiOCursAOWGw22ttae+zXkUvJYrdjdUVjj4ntsY9SSp2PdAioH8YEFmw3xuBtbcYW03NGkIgFW0wcFu38lVKjjJ4B9MMe5QJfIsb48bY0E5WRjfF68LnbQARXWhaWqCiiE5Ox6ZRPpdQoowGgH2KxYo+Lx9PcSGzeFNw1ldjiEnCmZwVWEBMLDv3Wr5QapTQAnIOI4IiND2y4nIjfgNWGvWMJSaWUGqU0AAyAw+GKdBOUUips9CKwUkqNUxENACLyNRExIpIayXYopdR4FLEAICITgOuAk5Fqg1JKjWeRPAP4b+AfgNGzKr1SSo0hEQkAIrIcKDHG7IxE/UoppYZxFpCI/BXI7OWhbwD/BFwf4nEeAB4IbjaJyMH+9j9LKlA1gP3HIn0P9D3ooO/D+H0PJvZWKB25bEaKiMwB1gEdyfVzgVLgImPM6TDXtdUYszCcxxxt9D3Q96CDvg/6HpxtxO8DMMbsBtI7tkXkOLDQGDMeo7JSSkWM3geglFLjVMTvBDbG5A/j4Z8axmOPFvoe6HvQQd8HfQ+6GfFrAEoppc4POgSklFLjlAYApZQap8ZkABCRG0TkoIgcEZHHIt2ekSIix0Vkt4h8JCJbg2XJIrJWRA4HfydFup3hJiK/FpEKEdnTpazP1y0iXw9+Ng6KyLLItDq8+ngPviUiJcHPw0ciclOXx8biezBBRNaLyH4R2SsiXw2Wj6vPwkCMuQAgIlbgZ8CNwEzgbhGZGdlWjairjDHzu8x1fgxYZ4wpJHD/xVgMiL8BbjirrNfXHfwsrABmBZ/z8+BnZrT7DT3fA4D/Dn4e5htjVsGYfg+8wN8bY2YAi4GHgq91vH0WQjbmAgBwEXDEGHPMGNMOrARujXCbIulW4Nng388Ct0WuKcPDGPMuUHNWcV+v+1ZgpTHGbYwpAo4Q+MyMan28B30Zq+9BmTFme/DvRmA/kMM4+ywMxFgMADnAqS7bxcGy8cAAfxGRbcEUGgAZxpgyCPwHoctNeGNcX697vH0+viIiu4JDRB1DH2P+PRCRfOACYBP6WejTWAwA0kvZeJnreqkxZgGB4a+HROSKSDfoPDSePh+/AKYA84Ey4IfB8jH9HohILPBH4BFjTEN/u/ZSNmbeh1CMxQBQDEzost2Ra2jMM8aUBn9XAC8TOJ0tF5EsgODvisi1cET19brHzefDGFNujPEZY/zALzkzvDFm3wMRsRPo/J83xvwpWDzuPwt9GYsBYAtQKCKTRMRB4CLPaxFu07ATkRgRiev4m0C21T0EXvtng7t9Fng1Mi0ccX297teAFSLiFJFJQCGwOQLtG3YdnV7Q7QQ+DzBG3wMREeBXwH5jzI+6PDTuPwt9iXgqiHAzxnhF5CvAm4AV+LUxZm+EmzUSMoCXA/8HsAEvGGPWiMgW4Pci8nkCq699IoJtHBYi8iKwFEgVkWLgX4Hv0svrNsbsFZHfA/sIzBp5yBjji0jDw6iP92CpiMwnMKxxHPgbGLvvAXAp8Blgt4h8FCz7J8bZZ2EgNBWEUkqNU2NxCEgppVQINAAopdQ4pQFAKaXGKQ0ASik1TmkAUEqpcUoDgFJKjVMaAJQaBUTkC8FU35/rUjZDRJ4QkZdE5EuRbJ8anTQAKDU63AlcTZcb+Ywx+40xDwJ3AQv7eqJSfdEAoIaNiNwuIkZEpge3E0Xky2Gu44MB7Pv22Yt+iMgjIvLzczyvabDtGygRyReR1i53snbYRCCHzaaz9l8ObCCQ576j7EkRubSfOsL+76BGJw0AajjdTaBzWhHcTgTC2vEYYy4ZwO4vdmlLhxXB8vPJUWPM/LPKYoH3gISuhcaY14LvwT1dii8GNvZz/ETC/O+gRicNAGpYBFPyXgp8njOd7neBKcHlCR8P7veoiOwJ/jwSLMsXkQMi8nSw/HkRuVZE3g8u63dRl3qauvx9bzD3/U4R+W0vzXoJuFlEnB31ANnAht7acdbryZfuyy1+TUS+NZD2isinRWRz8PU/GerqUyJiIZDM7V7g9o7nichSEfmxiDwJdKz2NQM41JHTRkReCa4PsbfLGhFh/3dQo5QxRn/0J+w/wKeBXwX//gBYAOQDe7rscyGwG4gh8A13L4FFPPIJJOeaQ+BLyjbg1wTyt98KvNLlGE3B37OAg0BqcDu5j3b9Gbg1+PdjwON9taNrHb20/WvAt4J/n7O9wAzgdcAefM7PgXt7aV+3eoJl1wIvB/9+Bbiun/f9UeD+LtvJwd9RBLKBpgzHv4P+jM4fPQNQw+VuAstxEvx9dy/7XEagY2s2xjQBfwIuDz5WZIzZbQK57PcSWNPVEOio8ns51tXAS8aYKgBjTF/LI3YdBuoY/umvHaE6V3uvIdDRbgmO718DTA7x2PdwZpjqRboP95xtGbCmy/bDIrKTwJDQBAIpj88Wzn8HNYqMuXTQKvJEJIVAhzxbRAyBtNyGwLfebrv2cxh3l7/9Xbb99P65FUJbzekV4EcisgCIMsZsl9BWTvPSfcjUNcD2CvCsMebrIdTVSUSiCHzbvkZEvh9sQ5yIRBljWs/aNxpINMGFgURkKYGzhyXGmBYRebuXdkN4/x3UKKJnAGo4fBx4zhgz0RiTb4yZABQBeUBcl/3eBW4TkWgJLGJzO4ELnYOxDrgrGHwQkeTedgp+w32bwFBGx7fqUNpRDqSLSErwGsLNg2jfx0UkvaN9IjIxhOctB1YbY/KC72UegaGkW3rZ9ypgfZftBKA22PlPBxYHyxsZvn8HNYpoAFDD4W4CS1J29UcCQy7vBy8oPm6M2Q78hsAqTJuAp40xOwZToQks+vMfwDvBIY8f9bP7i8A8gkNUobTDGOMBvhN8/A3gwADbtw/4Z+AvIrILWAtk9f8sIDDcc/Z7+TKBayxnu5Huwz9rAFuwvn8jODPIGFPNMP07qNFFF4RR6jwSnJn0hjFm9iCeux24OBislDonPQNQ6vziAxJ6uRHsnIwxC7TzVwOhZwBKKTVO6RmAUkqNUxoAlFJqnNIAoJRS45QGAKWUGqc0ACil1DilAUAppcYpDQBKKTVOaQBQSqlx6v8DLpYKSbNUV0cAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.scatterplot(\n", " data=df,\n", " x='volume_atom',\n", " y='energy_atom',\n", " hue='concentration'\n", ")\n", "plt.xlabel(r'Atomic Volume [$\\mathrm{\\AA}^3$/atom')\n", "plt.ylabel(r'Atomic Energy [eV/atom]')\n", "plt.legend(title='Li')" ] }, { "cell_type": "markdown", "id": "8f53c741-75ee-4847-82ac-1640c045b144", "metadata": {}, "source": [ "### Convex Hull" ] }, { "cell_type": "markdown", "id": "344b6061-09ca-4175-988a-05b1b2f08e2d", "metadata": {}, "source": [ "First find the equilibrium energy at the terminal concentrations." ] }, { "cell_type": "code", "execution_count": 14, "id": "7f68739c-1f55-45a3-80aa-16bb081aac08", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-3.4827513025 -1.757035875\n" ] } ], "source": [ "e_min_al = df.query('concentration == 0').energy_atom.min()\n", "e_min_li = df.query('concentration == 1').energy_atom.min()\n", "print(e_min_al, e_min_li)" ] }, { "cell_type": "markdown", "id": "759447cb-8cef-4b87-8da0-c46db64ecd30", "metadata": {}, "source": [ "Next calculate the deviation to the \"ideal\" mixing enthalpy\n", "\n", "$$\n", "e(c_\\mathrm{Li}) = e_\\mathrm{Al} + c_\\mathrm{Li} (e_\\mathrm{Li} - e_\\mathrm{Al})\n", "$$\n", "\n", "and call that the energy excess, where $e$ are the per atom equilibrium energies of the pure phases." ] }, { "cell_type": "code", "execution_count": 15, "id": "efcac90d-abcc-423f-ae19-0b5ad763f897", "metadata": {}, "outputs": [], "source": [ "df['energy_atom_excess'] = df.energy_atom - df.concentration * (e_min_li - e_min_al) - e_min_al" ] }, { "cell_type": "code", "execution_count": 16, "id": "7c309e2f-f9f9-4098-8332-c845cf621619", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Excess Energy [eV/atom]')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/J0lEQVR4nO3dd3hc1bXw4d8aNVuybMuyXCW540qz5IYNpgcDCYSOiamhBVIuCYHkfiH13lCS3JtCYkoIkIvpzRBaqCYxNljG3RgLYdlyL8KWq8qs749zJEZj6WhGmq71Po8ez5o5mtljSbPO2XvtvUVVMcYYY1rji3cDjDHGJDZLFMYYYzxZojDGGOPJEoUxxhhPliiMMcZ4skRhjDHGU1wThYicISJrRKRcRG73OG6CiDSIyAWxbJ8xxpg4JgoRSQPuBWYAY4BLRWRMK8fdBbwe2xYaY4yB+F5RTATKVbVCVWuBJ4BzWjju28CzwLZYNs4YY4wjPY6vPRDYEBBXAZMCDxCRgcDXgZOBCV5PJiLXAdcB5OTklIwaNSrsBu2vbWDvoXq6ZaWTnZkW9vd3JvtrG6jYsRdVEIGhvbvZ/5kxSaysrGyHqha09Fg8E4W0cF/weiL/C9ymqg0iLR0e8I2q9wP3A5SWluqiRYsi0UbjoayymgUVO5k8NJ+SQXnxbo4xpgNEpLK1x+KZKKqAooC4ENgUdEwp8ISbJHoDZ4pIvaq+EJMWGk8lg/IsQRjTCcQzUXwEjBCRIcBG4BJgZuABqjqk8baIPAy8bEnCGGNiK26D2apaD9yMU820GnhKVVeKyA0ickM82jRn4Xpm/XUhcxauj8fLG2NMQornFQWq+grwStB9s1s59spotmXOwvX8+PnlALy/dgcAMycVR/MljTEmKdjMbNeTH633jI0xprOyROHKTPd5xsYY01nZp6HriL65nrEx5ktlldXc+045ZZXV8W6KiYG4jlEkkvPGF/J0WRV19X4y0n2cN74w3k0yJiGVVVZz2YMLqK33k5nu47FvTrYy6RRnicJVMiiPx6+dbBPIjGnDgoqd1Nb78SvU1ftZULHT/l5SnCWKADaBzJi2TR6aT2a6r+nqe/LQ/Hg3yUSZJQpjTFhKBuXx2Dft6rszsURhjAmbXX13Llb1ZIwxxpMlCtNuViJpTOdgXU+mXaxE0pjOw64oTLu0VCJpjElNligCWFdK6BpLJNMEK5E0JsVZ15PLulLCYyWSxnQelihcNts0fFYiaUznYF1PLutKMcaYltkVhcu6UsJXVllt/19hmLNwPa+u2MyMcf1tUyyTVCxRBLCulNDZmE54bAdFk8ys68m0i5XHhufVFZs9Y2MSmSUK0y42phOeGeP6e8bGJDLregpgfe6hszGd8DR2M9kYhUlGoqrxbkPElZaW6qJFi8L6HutzN8Z0ZiJSpqqlLT1mXU8u63M3xpiWWaJwWZ97+GzJE2M6BxujcJUMyuOOs8c29SFbt5M366ozpvOwROEqq6zmFy+vpLbez0frdjGyX6598HmwJU+M6Tzi2vUkImeIyBoRKReR21t4/BwRWSYiS0RkkYhMi1ZbFlTs5GCd88F3sM7GKNpiXXXGJJY5C9cz668LmbNwfcSfO25XFCKSBtwLnAZUAR+JyFxVXRVw2FvAXFVVETkKeAoYFY32rN1a4xmb5qw81pjEEe2Z//G8opgIlKtqharWAk8A5wQeoKp79cv63RwgarW8wVcQdkXRtpJBedx00nBLEgnOig5SX7Rn/sczUQwENgTEVe59zYjI10XkE+AfwNWtPZmIXOd2Ty3avn172I0p7pXtGRuTjBqLDn77xhoue3CBJYsUNbZ/d8+4o+KZKKSF+w67YlDV51V1FHAu8MvWnkxV71fVUlUtLSgoCLsxt80Yjc9tkU+c2JhkZ/ODOofcrhlNH6jixpEUz0RRBRQFxIXAptYOVtV5wDAR6R2tBqWn+RD3X2NSgRUddA6Th+aTkSYIkJEmEf85x/MT8SNghIgMEZFM4BJgbuABIjJcRMS9PR7IBKJySrSgYid19X4UqLczL5MiSgblceWUwRT1yubKKYNtPCmViTT/N4LiVvWkqvUicjPwOpAGPKSqK0XkBvfx2cD5wOUiUgccAC7WKC1OlZed2dTv5XdjY5LdnIXrmT2vAoDZ8yoozs+xBQlT0IKKndQ3OCe6DQ2Rn9cU1z4WVX1FVY9Q1WGq+l/ufbPdJIGq3qWqY1X1GFWdoqr/ilZb3l2zzTM2Jhk9+dF6z9ikhmh3MdrMbNfWPQc9Y2OSUd/uXYDdQbFJNdFegshGbV0XTyj2jM3hrD4/8V0/fRgZaU6fdUaacP30YXFukYmGsspq7pi7gvfX7uCOuSsi/jdpVxQu21gmPLYoYHIoGZTHz782zha7THH3vfcZ9Q3OKGt9g3Lfe59x/+Utbi3RLpYoAsycVGwJIkS2KGD45ixcH/MTEVvssnOIdte5JQrTLo2DZ3X1fqvPD0G01+JpjSX0zuHiCcUsrVreLI4kSxSmXWxRwPC0VH0Ui0QxeWg+6T6hrkFJ80V+IpZJDNHuOrdEYdqtZFCeJYgQZaX7PONoqverM5HUH7U1NU0CiGbXuVU9GRMDw/vmesbRcterq2nMD351YmPC1eoVhYjcEsL371PV+yLYnrgqq6y2rhQTFeePL+Spj9ZT74d0nxPHwopNuz1jY0Lh1fV0K/AXWl7ltdENQEokCiv3DJ8l1vD4fD7E78fni+WFfPCfb+TXATKpzytR/F1Vf+H1zSKSE+H2xI1Vh4THEmt4AtfiqY/CWjyt6ZObxbqd+5vFxoSr1VMbVf1hW98cyjHJwpZjDo/tcxCevOzMZmMFsVp0svpArWdsTCjarHoSkZ7A5cDgwONV9TtRa1UcWLlneGweRXhaWnQyFuWxe/bXe8bGhCKU8thXgAXAcpwVuFOWlXuGzhJreOK16GRwQawVyJr2CCVRdFHVUCqgTCdjiTV0U4bms7Rqd7PYmGQRSvnF30XkWhHpLyK9Gr+i3jJjUki09zQ2JppCuaKoBe4B/pMvr1wVGBqtRhmTaiYPzSfDxnRMkgolUdwCDFfVHdFujDEprXEX3+js5ms6uWjOawolUawE9rd5lDGmVQsqdlLr7hdQ26A2T8dEVLTnNYWSKBqAJSLyDnCo8c5UK481JprWbq3xjJONzcpPLAsqdnKozpnQWVsX+QmdoSSKF9wvY0w7BU9ITOYJimWV1Vx8/wfUNyjpacKT102xZBFnedmZTQPIfiI/obPNRKGqj4hIJnCEe9caVa2LaCtMUrKzytB1yUjzjJNJtLfdNOFbGbTYY3DcUaHMzD4ReARYh1PZVyQiV6jqvIi2JAHYB1/obK2n8KT7xDNOJqFMHrS/pdiKdtdmKF1PvwVOV9U1ACJyBPA4UBLRlsSZffCFxxZRDM/Qgm6Ub9/XLE5WbW27aX9LsbdrX61n3FGhTLjLaEwSAKr6KZBys4UaB4P8+uVgkGmdLaIYnhNH9vGMk8nMScX899eP5PgRvfnvrx952JpVtmBk7GUG7ZgYHHdUKFcUi0Tkr8Df3fgyoCyirUgA0R4MSjW21lN4qvfXIjgzVcWNk9nIfrlU769lZL/Dd+qbPDSf9DRncmFamp1ExMLug/WecUeFkihuBG4CvoPzOz4PuDcSLy4iZwC/B9KAB1X1zqDHLwNuc8O9wI2qujQSrx2sen8tPnGWgPZJ8v8hx4Kt9RS6wBMRJblPRELqWrLJhTF1qK7BM+6oUK5PblDV36nqear6dVX9H5zk0SEikoaTcGYAY4BLRWRM0GGfA9NV9Sjgl8D9HX3d1kwemo/PHWD0+cTOgkxEBZ54xPKKIk284/Zoq2upcXKhAnXu5EITZVHeyDCURHFFC/ddGYHXngiUq2qFqtYCTwDnBB6gqvNVtdoNFwBR22h4zZaaZiV/a7Yk94Qok1gCryBieUXRoN5xezR2LQm02LVUc+DL6nkNik10dEnzecYd1eqzicilIvISMERE5gZ8vQNE4hRhILAhIK5y72vNNcCrHu29TkQWicii7du3h92YV1ds9oyN6YjGMQpIjTGKBndb14aGw7eoWbl5j2dsIi+3S4Zn3FFeaWc+TmnsJ+6/jV/fB86IwGu3dHHU4vmOiJyEkyhua+lxAFW9X1VLVbW0oKAg7MaM7d/dMzamI2oO1DUbo0jms+zZ733WdGXSoE4cyP6WYm/PoXrPuKNaHcxW1UqgEpgS0Vf8UhVQFBAXApuCDxKRo4AHgRmqGrXOzsb9AhqrUmy/ABNJqXSWvS1ogl1wXBP0IRUcm8jbd7DOM+6oNjuyRGSyiHwkIntFpFZEGkQkEr/lHwEjRGSIu0TIJcDcoNcuBp4DZrnzN6Jm8tB8sjKceQFZGVbSZyJrxrj+nnEyGdI7xzO27Vdjr8GvnnFHhTLi8SfgUmAt0BX4JvDHjr6wqtYDNwOvA6uBp1R1pYjcICI3uIfdAeQDfxaRJSKyqKOv25qSQXlcOWUwRb2yuXLKYCv7NBE1c1Ix5x4zgJ7ZGZx7zIDDJqklk8937POMxw3o4RmbyMvJSveMOyqkZ1PVchFJU9UG4G8iMj8SL66qrwCvBN03O+D2N3ESU9TNWbie2fMqAJg9r4Li/Jyk/mM2iWXOwvW8sMTpWX1hySYmDslP2t+vrKBZv8GxzUmKvf21DZ5xR4VyRbHf7RpaIiJ3i8h/ADltfVOysaonE03x+v3KDJo4ERy3x/C+uZ5x4PIumba8S0xEewmPUJ5tlnvczcA+nAHo8yPaigSQSn3IJvHEqxKof4+unnF7nD++kMw0QXASz/njm09valze5ZbTR9qCgDHSJzfLM+6oVrueROR+nHkLb6rqQeAg8POIvnoCGdkvlzQfNPghzUeLa9gY017BVXSxqqrLCDqzDI7bo2RQHo9fN8VznS9b3iW2dgeVWwfHHeU1RvEQznyJW0SkFngDeC1aay3F23OLq2icO9Tgd2L7RTeREjwTO1Yzs4f2zqF8295mcSS0lQhsP4rY2l9b7xl3lNc8igU4y2b8TETygdOB74vIkcDHOEnjqYi2Jo6spM9EU7wGeE8c2Yc3Vm1tFkeCVyKw/Shib3+t3zPuKK8lPPo23lbVnar6uKperqrH4izmNyKiLYmztvpdjemIeA3wRmOLzLLKai69/wN+8/oaLr3/A8oqq5s9bvtRxF6D3+8Zd5RX19NSEVmOs5vds6ra9BumqmWk2J4UofS7GtNeJYPyuOPssby6YjMzxvWP2e/XtppDnnF7PLu4ilp3DY/aBuXZoG7axqRYV++3Ta1iJM3noz4gOaT5Yrdx0UDgVJwZ078WkQ9wksZcVT0Q0VYkCBuAM9FSVlnNHXNXUN+gfFCxk5H9cmPyuxaNapjyoP2Yg2Pb1Cr2ivO6sjZgq93ivI5XtwVqNe2oaoOqvq6qV+GUxP4NOBf4XEQei2grEkRZZTX3vlN+2KW0aZn9f4Xuvvc+a7aM/X1BC+lFy3njC8lMd5YEz0z3cV4EulSjvT+zCd/OoJ9BcNxRoc7MrhWRVThLbZTgbDSUUmwALjz2/xWe9z/d7hlHS8mgPB6/NrJn90MLulEecPY6tKBbs8ftdyP2Gjdday3u8PN7PSgixSJyq4gsBl7G2bL0HHdAO6XYAFx4Av+/au3/q00H6/2ecTSVDMrjppOGR+zD+vrpw8hwZ3hnpAnXTx/W7HH7W4q9eE64m48zTvE0cJ2qRm1BvkRgA3DhycvOpHGBSr8m9x7QsdA1w8f+On+zOFmVDMrjCY/CD/tbir3aoBOP4LijvLqefgTMU+0cu6PbAFx4GndsU5zLUlv4zVv3LhnsrzvULE5mXoUf9rcUe211B3aU14S79wBE5AjgL0BfVR3nbiT0NVX9VURbkgCs6il0jft32FljaHYGJdLgONm0NfPa/pZi6/rpw3h7zTbqG5T0FroDOyqUwewHgFuB+wBUdZmIzAFSLlHMWbi+qc49WZeAjhU7awyPP2gjmeA4mdhgdeIpGZTHk1GcBxZKoshW1Q9Fmo2ip9zehnMWrufHzy8H4P21OwAsWbTBzhpDF5wXkjhPtDhYbb8H8RfNv8dQRtR2iMgw3OWPROQCIOU2a7D9KEw0pdJaYoHLkVi3Y+cQyhXFTcD9wCgR2Qh8DlwW1VbFwdj+3ZuuJBpjY8zhrNux82kzUahqBXCqiOQAPlWtaet7klFu14ymKh4hdvsFGBNt0Vjy27odOxeveRRnq+rLjbGq7mvrmGRmVTwmFZVVVnPpAwuafq8fv9YGnk34vK4o7nG7mrzmgv83zoztpFcyKI8rpwzmtZVbOGNsP/tjCoFtTpP4nltc1TT5qrbebxtymXbxShRbgd+18f1rI9iWuJqzcD2z51UAMHteBcX5OVb15MFKJMPTuM1uYBwLqTSIbuLHa8LdiTFsR9y1VPVkiaJ1ViIZHvV7x9Fy/vhCnlm0gboGJSOGG3LZ1WZqCWn12M4gPyfTMzbN2Xo+4QnOC7FaEjAeG3LZ1WbqsUThWrFpj2dsmrMSyeQR6wolu9pMPXFdwlJEzhCRNSJSLiK3t/D4KBH5QEQOicgPotmWA7X1nrExJjQ2IS/1tHlFISKLcHa3m6OqEdvKTETSgHuB04Aq4CMRmauqqwIO2wV8B2dnvaga2LMrG7842Cw2rbOyS9Mau9pMPaFcUVwCDMD5IH9CRL4iQQs/tdNEoFxVK1S1FngCOCfwAFXdpqofAXUReD1PPYL2UwiOTXONZZfKl2WXxpjUFMrM7HLgP0XkJ8DZwEOAX0QeAn6vqrva+doDgQ0BcRUwqZ3P1WG7g5Z9Do5Nc1Z2mTxiXYFkg9mpJ6QxCncPit8C9wDPAhcAe4C3O/DaLV2VtPvzRkSuE5FFIrJo+/bw9yO2DePDc/74QjLTBAEyY1h2acLT2EX4m9fXcOkDCyirjFjvcatsK9TUE8oYRRnwBfBX4HZVbdyma6GITO3Aa1cBRQFxIbCpvU+mqvfjLF5IaWlp2AknI2gGVHBsmotH2aUJXzxmZk8emk+6T6hrUNJ8YoPZKSCU8tgL3YUBD6Oq53XgtT8CRojIEGAjzljIzA48X4fUBW0QEBybw63ZUsOCip3kZWdaokhQcesiFHeJzYgMZ5p4CyVRnNvC2PVuoExVl7T3hVW1XkRuBl4H0oCHVHWliNzgPj5bRPoBi4DuOOMi3wPGqGrEJzn0ys7wjE1zttFTchg3oIdnHA0LKnZS3+AUOtQ32DyKVBBKoih1v15y47NwrgZuEJGnVfXu9r64qr4CvBJ03+yA21twuqSiruZgvWdsmnvyo/WHxZYoEs/KTbs942jIy85s2sHPr05sklsoiSIfGK+qewFE5KfAM8AJQBnQ7kSRSCp27POMTXN1DX7P2CSGT7fWeMbRUL2/tmlvF58bm+QWyohtMRD4k64DBqnqAeBQy9+SfPyqnrFpzgb/k0P1/jrPOBoa93ZJE8jMsJnZqSCUK4o5wAIRedGNvwo87u54t6r1b0suXdJ91DU0NItN64b0zmFp1e5msUk8eUFjbcFxNJQMyuOOs8fy6orNzBjX38YnUoBnonBnYD+MM44wDWfuww2qusg9JGX2zj5Y7/eMTXM7g+aZBMcmMQSXocSiBqmssppfvLyS2no/H63bxch+uZYsYiCaEys9E4Wqqoi8oKolOOMRKauuQT1j05wty54cNn1xwDOOhgUVOzlU5y7vUmdVT7EQ7bXXQulfWSAiEyL2iiYl2BVFcqg5VO8ZR0NedmbTfA0/VvUUC9Feey2URHESTrL4TESWichyEVkW0VaYpDO2f3fP2CSGPQfqPeNoqN5fi8/t4/KJVT3FwvaaQ55xR4UymD0joq+YoNIEAnub0mxCqafcrhmesUkM8ZiZbbsfxt6yDV94xh0VyuqxlSIyDRihqn8TkQKgW0RbkQCyMtLYX9vQLDatqzlQ5xmbzsv2o4i9bXsPecYdFcqigD/FmZk9EmcDowzg/4COLAiYcLpnpTdLFN2zbJdYLx8ErQgaHJvE0DjxLTCOhVhvv9rpRfnSMZQxiq8DXwP2AajqJiA3ss2Iv1q/3zM2zdnM7OSQFTQfKDg2qSF4vmuk57+G8nS1qqq4OcqdaJdycrMyPGPTnM3MTg5njOvnGZvUUOf3jjsqlL/up0TkPqCniFwLvAk8ENlmxN/OoD694Ng0NyVogDI4NokhsDu1pThayiqrufed8phslGSiL5TB7N+IyGk4O9qNBO5Q1X9GvWUxtr+uwTM2zeV2zWjq/xas6ilRbd1z0DOOBtsKNfWENGLrJoaUSw6BsjPS2BtwtpVtVU+eGhd+sxLIxBaPNbla2grVEkVyC6Xq6TzgLqAPzsmj4KzukVIzrPK7ZbF31/5msWmdlUAmh4+Cun6C42iweRSx5xMI3JTTF+HytlCuKO4GvqqqqyP70oml5lCdZ2wOZyWQia86aGmV4Dga7CQi9iSoDjrSO9CGkii2pnqSAMgMqtoJjo1JRtlZzSeSZmfFpkvVTiJiK7g6PdLV6qEkikUi8iTwAgEbFanqc5FtSnztC1osLTg2h4vmssYmMsYX5fHGqq3N4liw343UEkqi6A7sB04PuE+BlEoUPbpmUHOooVlsWhftZY1NZFw/fRjvrNlGXYOSkSZcP31Y1F/Tqp5STyjlsVfFoiHx9q2TRvDj55c3i03rGpc1hi+XNbYPg8RTMiiPa6YO4bWVWzhjbL+Y/Iys6in1tNoRLyJPBdy+K+ixN6LZqHgY2S+XDHfJ2Iw0YWS/lFulJKK2BS1jHBybxDBn4Xpmz6tg3c79zJ5XwZyF66P+mpOH5pPuEwRI84lVPaUArxHbwFPq04IeK4hCW+JqQcVO6t11xhsalAW2yJ2nPrlZnrFJDA/9+3PPOGoay24iXX5j4sIrUXitP5hy+4TarlzhOW98IenuFVh6mnDe+MI4t8i05EBtvWfcXl5LdDgnXc5ua/UNfjvpioF+3bM8447yGqPIFpFjcZJJV/d244S7rhFtRQJYuWm3Z2wOJ0H/msQzdkAPNn5xsFncUWWV1Vx833zq/ZDugyevP67ZGERedmbT5C+/2klXLGSlp3nGHeV1RbEZ+B3wG2CLe/u3AXFKicdOYMnsucVV1LlddXUNGvE9ek1kXD99WLOxt0hUPc1+7zPcOgbq/U4caEXQSVZwbCJvS9AaXsFxR7V6RaGqJ0X0lVogImcAvwfSgAdV9c6gx8V9/EycEt0rVXVxNNoysk837ptVQs+uGXxxoI4tXxyIxsukjMVBXQ7BsUkMJYPyeOK6KRGd0/D5jn2e8ZL11Z6xibwJg3sya8qQps+vv38Q2bGouG3jJiJpwL04A+VVwEciMldVVwUcNgNnUH0EMAn4i/tvRPn9yugB3bnlqaVUVR+gMK8rv7voaPx+xRfpRVNSRDxWJTXtE+lZ0kN651C+bW+zONCW3Qc9YxNZfr9y00kjuPWZZU2fX/dccFREP7/iuU7FRKBcVStUtRZ4Ajgn6JhzgEfVsQBnT4z+kW7Izn21TUkCoKr6ALc8tZSdMVgXJ1l1D5qQGByb1HXD9GG4vVmkiRMH6tu9i2dsImvnvtqmJAHO59etzyyL6OdXPBPFQGBDQFzl3hfuMQCIyHUiskhEFm3fvj2shtTWNzT9Jze9UPUBauttT4rW2FaoyWPOwvXM+uvCiM6hSEvzOfMkbE20uDtYF/3PrzZ/yiIytXH7UxH5hoj8TkQGReC1W7omCh5DDuUY507V+1W1VFVLCwrCm+aRmZ5GYV7zQq7CvK6Ub9/HCx9vtA/BFgT/YKyDLjHNWbieHz+/nPfX7uDHzy+PSLIILH9taKH8dWvQ5Mvg2ESG3688tWgDn26tafHzKzOClU+hnA78BdgvIkcDPwQqgUcj8NpVQFFAXAhsascxHZafk8kDl5c2/WcX5nXlD5ccy2ML1vG9J5cw5ddv8ed3y9m935Yeb9Q4ObG12CSGV1ds9ozbo62Z18MLcjxj03GL11dz7p//zQ+fWcaLSzbyp5njm31+PXB5Kfk5kStLDmUwu15VVUTOAX6vqn8VkSsi8NofASNEZAiwEbgEmBl0zFzgZhF5AmcQe7eqdvw3PYjPJ4zsm8vz35pKbX0Dmelp5OdkMvsbpTz/cRWPfFDJ3a+t4Q9vreXCkiKuPX4oxfnZkW5GUrGzxuQwY1x/3l+7o1kcCX6cS/uWrrXPPbaQD9dVN4tNZGzbc5A7X/uE5xZvJC87g2+fPJwrjxtMXnbmYZ9fkSzECSVR1IjIj4BvACe41UodHrlU1XoRuRl4Hac89iFVXSkiN7iPzwZewSmNLccpj43aAoU+n1DQwjIU55cUcX5JEQsrdjL7vc94/MP1PLawkpNH9eHGE4dRMqhXtJqU0GzeSXKYOakYcK4kZozr3xR3xLOLq5quIOsblGeDFoR8d822Zse/u2ZbRF63MztU38BD/1rHH99eS229n3OPHcD1JwxlVL/uiLtMSkufX5ESSqK4GOdM/xpV3SIixcA9kXhxVX0FJxkE3jc74LYCN0XitTpq0tB8Jg3Np3LnPv74djmvrdjCm6u3MW5gd26cPpyvjO1Lug3smQQ0c1JxRD+o2xqfqgiaVxEcm9CpKm9/so1fvLyKyp37KRmUxzenDebUMf3IiOHnTUhXFDhdTg0icgQwCng8us1KXIPyc/jNhUdzx9mjeeD9z3l6URU3zVlMv+5d+ObxQ7hkYjHdsuI2PcWYw9z5yuqmZcZvP3N0h58veBmQ4LiteRYmNJ9t38svXlrFe59uZ0DPLvy/s0Zx8YRicrvEvhQ9lE+0ecDxIpIHvAUswrnKuCyaDUt03btm8v3TR/LdU0bwdFkVf/+gkl/9YzW/++enXDqxmGumDWFAz5RbEsu0U9CWxjGrErvzldXMnlcB0PRvR5NFW+ui3TB9GG+v3kqDtjzPwnjbc7COP761lr/9ex2Z6T6umDKIbx4/lKJe8RsXDSVRiKruF5FrgD+q6t0isiTK7Uoa6Wk+Lp1YzKUTi5n36XYeeL+Cv/37c/727885Y1w/bpw+nCMLO74Qm0lu8RrTeW3llsPijiaKUPYiSUvz4a/32zyLMPj9yjNlVdz12ifs2lfLiaMKuG7aUCYOzSctzitEhJQoRGQKzhXENe59sdmhPcmccEQBJxxRwNptNfzp7XLeWLmVV5Zv4djinnzrxOGcMqqPLQliYuqYop6s27m/WdxRbY1RtDTPwna487Z4fTU/m7uSZVW7OaJvN26fMYqvHj2ALhmJ8VEbSqL4HvAj4Hm3Kmko8E5UW5XkRvTJ5feXHMuufYeY/V4Fzy/eyLWPLqIwryvXnzCUC0qK6JqZGL8AJjbi1fU0om+uZ9wevYOqa4LjxnkWdQ1qO9y1oaVy1yuOG0zvbom1EVgoe2a/B7zXODtbVSuA70S7YamgV04WPz5zNLeefgSPLVzPYwvX85MXV3L362v4xuRBXHXcYPrYOjidQla6j4P1/mZxLATvBRGJvSH2H6r3jAF3Zzu1He5aEVzu+vVjB3Dt8UMY3b9HU7lrIgllCY8pIrIKWO3GR4vIn6PeshSSkZ7GlVOH8MZ/nMCDl5cydkB3Zr/7Gcfd+Tbfe/JjVm/eE+8mmigLTBItxdHyTtCchuC4PZZs+MIzXlCxk9p6p+uprt52uAukqry1eiun/8887nrtE8b0784fLz2Guy84mjEDeiZkkoDQup7+F/gKzixpVHWpiJwQzUalKhHh1DF9OXVMX1Zt2s2973zGq8u38MLHm5g8tBc3njicE0b0TthflkA+ms/KtSHLxNTW3hHtccbYfk0VVI1xoJoDXy51o0FxZ3Z4uetoLp5QFJdy13CFVPCvqhuCPrxsWdUOGjOgB/deNp5tew7yl3c/48Wlm7jioQ8Z0juH608YyrnHDkyYgayWaFCnuyZ+buuU8rIzPOP2KM7P8YxXBl0hB8edTUvlrtccP4TiXskzvySUE8ENInIcoCKSKSI/wO2GMh3Xp3sXfvq1scy/7WR+fOYoULj9ueVM/vVb/M8/17Bzb2KuoaTqHZvEcETQ4HVw3B5tLTQYvBhdJBenSyZ+v/LURxs46Z53efD9z5l+RAEPXl7KHV8dm1RJAkK7orgBZzvSgTirub5BgiyrkUq6ZKZx3QnDuPb4obyyfDN/+/c6fv9WOX95t4Jzjx3AdScMY3ifbvFupkkybc2ibo+2FhoM3jCnM24AlujlruEKpeppB518FnYsiQhnHTWAs44awJIN1fz5nc94/uONPLWoihNG9OaGE4cxZWh+3McxsjN87K/zN4tN4qneX9tUmutz445av3OfZxytFWuTwdY9B7nr1U947mOn3PU7pwzn8smD6J2b3NWNbSYKEXkE+K6qfuHGecBvVfXqKLet0zumKI/7Ly9lY/V+7n2nnH8s38LMBxZyRN9u3HjiMM46cgCZMSqzDJaZntYsUURykxQTOZOH5pOV4aOu3k9Gui8icxqeWrThsDhwtvfMScWs37mvaX2pzrBybEvlrtdMG8LYAYlZ7hquULqejmpMEgCqWi0ix0avSSbYwLxs/vu8o/h/Z43hr//6nCcXbeA/nlzKf/1jNVdPHcJlkwbRIwKDlOE4WNfgGZvEUDIojzvOHtu0zHgkZki3tQ1uWWU1D81fR129n4fmr+O0sf1Sdma2U+66jV/+w1ndtXRwHtdMHcKpY/rGdHXXaAslUfhEJE9VqwFEpFeI32ciLDsrnW+fMoKbThrOC0s28sj8ddz9+hr+8PZaLigp5NrjhzIoPzaDZHV+v2dsEkNZZTU/e2kldfV+Fn6+i5H9cjv8oV0blBiC4+cWV1HrzhOprffzXNB+FamifNtefvmyU+46sGdXfnLWaC6cUET3JCh3DVcoH/i/BeaLyDM4XZ0XAf8d1VYZTz6fcN74Qs4bX8iHFbuYPe8znvhwA48tWM/Jo/tw4/RhlAzKi+olr0+EhoD6WF8KXF6nomh8aGelp3Govr5ZHOjTrTWecbLbc7COP7y5lofnB5S7ThtyWJlwKgllMPtRESkDTsJZouY8VV0V9ZaZkEwc2ouJQ3s121DprdXbGDegOzecOIwzxvaLyoZKwwu6sXpLTbPYJJ5orFp7TFFP5gUMVgcvNLiiardnnKyCV3c9eVQfrp46mMnDesd9dddoC2UJj2tUdaWq/klV/wisEZGfxqBtJgyNGyrNv/0kvn3ycHbuq+XmOR8z9a63eWBeBTUHIzs7dtaUwZ6xSQznjy8kM00QIDNNOH98x/ev3h000zo4PhC0PElwnIzKKqs5995/88Nnl5HfLZN7LjiKP80cz9QRBSmfJCC0rqdTROR8nCXG84G/Ae9FtVWm3QI3VHqmrIpHP6jkv15Zzf+8+SmXTCjmmuOHMDACGyqtCNqsJjg2zcVryZOSQXk8ft0UFlTsZPLQ/IiMFfTt3gXYHRSnpsBy1145mXz3lBF8Y3IxBUle7hquULqeZorIxcByYD9wqar+O+otMx2SnubjkonFXDKxmH+t3c598yp4eP7nPDzf2VDphunDOKqwZ7uff0fQZjXBsWku+Jw6lufYa7bUsKBiJ3nZmRFJFEODtjYNjrt3SWPPwYZmcbI5VN/AX//1OX96u5zaej/nHTuQq6cOZuzA1Ch3DVco8yhGAN8FngVGA7NE5GNV3e/9nSZRTBtRwLQRzoZK975dzhur3A2Vinpy44nDOGV037AvnwuC9iAIjk1z8dqPYs7C9fz4+eUATZPgOjqvoa21nGoONnjGiayx3PUXL69i/a79TBicx9XThnDKqL5xm7OUCELpenoJuElV3xInld4CfASMjWrLTMSN6JPL/7obKt03z9lQ6bq/lzGwp7uhUmkh2ZmhVT5HY2mIVObzQWAVqS9Gnzl3vbb6sLijiaKtHe7ite1rR5Vv28svXl7FPLfc9adnj+H80sKULHcNVyifChNVdQ+AqirwWxGZG91mmWjqlZPFj2aM5genHcGcDzfwfwsquWPuSu55Yw3fmDSIq6a2vaFS4NIQQmSWhkhlQVMNDoujZe/Bes+4PT5eX+0ZJ5vgcterjhvMlVMHx2xOUjJoNVGIyA9V9W5V3SMiF6rq0wEPXwX8OPrNM9GUkZ7GFccN5vIpg3jrk208+H4Fs9/7jAfer+Dso/pz/fRhjO7fvcXvzcvObDpTVCKzc5qJvHSf0NCgzeKO2lfb4BknC79febpsA3e/toZd+2o5ZXQfrjquc5S7hsvriuIS4G739o+AwERxBpYoUoaIcOrovpw6ui+rNu/h3rfLeXXFFl5YsolJQ3px44nDmH5EQbNBvJVBVU7BsUkMhxrUM24Pv3rHyaCsspqfz13Jso27Gdk3lx/NGMVZRw2wvexb4ZUopJXbLcUmRYzp3517LxvP9ppD/Pmdcl5cuokr//YRg/OzuWH6sKYNlbplpnHfrBJ6ds3giwN1LF63K95NN6ZNweWu3zt1BDMnFtve9W3wShTayu2W4rC460U9CQwG1gEXNa4lFXTcQ8DZwDZVHdeR1zThKcjN4qdfG8ttZ4zi0QXreHzhBm5/bjl3vvoJP/zKEZwypi+3PLWUquoDFOZ15X8uOga/X/HZJbtJQC2Vu141dTDjOmm5a7i8ai+OFpE9IlIDHOXeboyP7ODr3g68paojgLfcuCUP43RzmThp3FDp7R9M596ZxzK8Tzfyc7s0JQmAquoD/MdTSzrlBjUmsakqb67ayum/m8fdr61h7IDu/HHmsdx5/lEcWdjTkkSIWr2iUNVodtadA5zo3n4EeBe4rYU2zBORwVFshwlR4IZKn+/Y25QkGlVVH7ClxjuJeM0JCVdL5a7nlRTSo6uVu4YrXsuF91XVzQCqullE+nT0CUXkOuA6gOLi1N8oJZ66ZWVQmNe1WbIozOvK6s17+PWrq7l0YjHHWeWIiZPgcterpzqVfYN728KV7RW1RCEibwL9WnjoP6Pxeqp6P3A/QGlpaRLWYSSP/JxMHri8lGsfXdQ0RvHny8bz2ootzPt0B68s30Kf3CwuKi3iotIiivOz491kE0GJOqGupXLXK6cMZspwO2npqKglClU9tbXHRGSriPR3ryb6A9ui1Q4TeT6fMLJvLs9/ayq19Q1kpqeRn5PJUYU9uenEYTy5qIqXlm3i3nfK+dM75ZQOyuPSicXMOLJfyDO/jQlHWeUufjZ3Jcs37mFUv1x+dOZozrTft4iJ1//iXOAK4E733xfj1A7TTj6ftLi+U06XDK6eNoSrpw1h7bYaHpm/jjdXbeP7Ty/lJy+u4Kwj+3PJxGLGF3eugcR4rR6b6rbuOcidr37C826563+cOoJLJhbRt3vHV0g2X4pXorgTeEpErgHWAxcCiMgA4EFVPdONH8cZ9O4tIlXAT1X1r/FpsgnXiD65/OrcI/nF1/y8vnIrz5RVMXfpJp4uq6K4VzaXTizi/PGFnaKGXYJGgFM5R8YiKQaXu54/fiBXThnMuEIrd42GuCQKVd0JnNLC/ZuAMwPiS2PZLhMdPp+PGUf2Z8aR/dm1r5bHFlTyyorN3PXaGu55fQ3TRvRm5sRiTk7hFTrjucx4zEWxLEpVeXP1Nn718ioqd+1n4pBeXD11MCeN6nPYlqwmcqwDz8RUr5xMvn3KCL59ygiWbviCRz9YxztrtnPD/y2mR9cMvn7sQC6eUNTqGlPJqkuar9lOb12isD1toojWEh/l22r4+UureH/tDgrzuvLTr47hvGML6ZFt5a7RZonCxM3RRT35bdEx1NY18MKSTbywZCP/t6CSh+evY1S/XGZOKuacowemxAdBcNVNMlfhpPsgcHfTaF8E7jlYx+/fXMsjAeWusyYPYojt0x4zlihM3GVmpHHRhCIumlDE5i8O8MgH63h9xVbueHElv3x5FaeO7sulE4uZmsRljnuDVlgNjpNJW1cMkep5aix3veu1NVTvq+XUMX25YkoxU4Z1jn2qE4klCpNQ+vfsyu0zRnP7jNH8q3w7T3y4gXfXbOfVFVsoaJqbUWh7BcSRqnfcr3sWm/ccahaHyyl3XcXyjbsZ1S+X/zxzNGeM60dOln1kxYP9r5uENW14AdOGF7DvUB1PLaripaWb+Mu75dz7Tjkl7twMq5WPveJe2VTu2t8sDuQLGn8Jjr1s2X2QO19dzQtLNjnlrqcdwSWlhfTtYeWu8WR/YSbh5WRlcNXUIVw1dQjl2/by8PzPeWv1Nn7w9FJ+8sIKzjqqP5dMKKJkUJ6VRgaJRqnq9dOHNe3D3RgH2r7noGfckoN1Trnrve845a4XlBQya1IxRxV1rvk2icoShUkqw/t0a5qb8caqrTxdVsXLSzfxjDs345IJRZxfUkjfBJubEesB4EYSlCkkAq/b1ja4tUGbIwXHgRrLXX/58irW79rPpCG9uGbaEKaPLLBy1wRiicIkJZ/Pxxnj+nPGuP5U76vlsYWVvLJ8C3e/vobfvLGGqcOduRmnjE6MuRmZ6WnUBwxgZ8boQ9Dv947bo61tcNN8zfcEb63nKbjc9edfG8s5xwygp22rm3AsUZikl5eTyc0nj+Dmk0ewbMMX/H1BJW99so0bH1tM9y7pfH38QC4uLWbMgPjNzaitb/CMoyUaC/gFX0EExz6EhoBX8gXVPe0+4JS7PvrBOrLSfXxz2hAum1Rs5a4JzBKFSSlHFfXknqKe1NX7eWHJRl74eCOPLVjPI/MrGdUvl0snFsflrDVe+0xHY5L02q01nnGP7Ax27K1tFsPh5a6njenLrCmDmDI0n/QUnoCYCixRmJSUke7jwtIiLiwtYvPuAzwyfx2vr9zKT+e6czPGOHMzpsVobsaw3jms3b6vWZys5q3d4RlPG96bF5ZsahYHlruO7p/LT84azeljrdw1WdhPyaS8/j2+nJvx7/IdPPHhet5ds53X3LkZF5YUclFpEYOj+OE9pKBbs0QRq26WaHQ9dc3wecYZPuG+WSX07JrBFwfq+PsH6zj/Lx+Qn5PJLacdwUWlhfSzctekYonCdCpTh/dm6vDe7DtUx9OLqnhp6WZmv/cZf373M8YX93TnZvSP+Jnu1qAS0eA4WqLR9TRhcC82BlwxTBjcq+m236+cX1rED55e2rSp1V3nH8XEwb2YPrIPRw7sgc9mVScd6xg0nVJOVgZXTh3Cs986jn/eMp1ZkwexZfdBbn1mGaW/epPvP7WERet2ocHTjtvp4gnFnnG0pKeJZ9wen+/Y12q8fe+hpiQBzl7qtz27jIsnFnN0UU9LEknKrihMpzesoBu/PHccP//aGP65ehtPL9rAP5Zt5tnFGynqlc0lEwo5f3wR/Xq0f27GyH65TWWjaT4njoXhBd1YvaWmWdxRWUHlxlnpPnYfqOOxhZVMGNyr2V7q4CSL+oaUXlg95VmiMMbl8/n4yth+fGVsP6r31TLnw0r+sWwL97z+Kb9941OOG9abmZOKOWV0+HsfPLu4qmluQYPfiUsG5UXhXTQ3a8rgZrOoZ00Z3OHnHN4nh2uOH9o0BvHUh+uZ8uu32F/bwP9dM5HCvK7NkkVhXteYzRsx0WGJwpgW5OVkctNJI7jppC/nZrz9yTa+9dhicrukN+2bMXZAj5CeL7jDJVYdMNX7a/GJU47rk8PnPITL71fOOmogtz27rNkYRHF+DkcX9eDIwh48cHkp1z66qOnxBy4vJT/HJtElM0sUxrQhcG7Gi0uduRlzFq7n0Q8qGdk3l0snFnHOMQPJ8/gwDE4ooSaYjpo8NJ80n+BvUNJ8wuSh+e1+rk1fHGDXvtqmJAFfjkE8c+Nx9HOXTcnNyuD5b02ltr6BzPQ08nMybWwiyVmiMCZEGek+Ligp4oKSIrbsPsAjH1Tyxsot/OylVfzqH6s5ZXQfLp1YzPEjDt8vYcWm3Z5xtKzZUkOdu9ZSXYOyZktNWF1eX+yv5ZXlW3hxyUY+/HwXT1w3ucUxiIaAMQifTyjIDX9pcZO4LFEY0w79enTltjNGcdsZo5hfvoPHP1zPu59u5/WVWynolskFpUVcVFrEEHduRm5mWrO5BYvX7YpJO19dsfmweOYk74qrA7UNvLl6Ky8u2cS7n26jvkEZ2LMrMycV0ysn08YgOiFLFMZ00HHDe3OcOzfjmbKNzF26ifve+4y/vPsZxxb35FsnDuPk0X35fsDcgt9eeDR+v0a9S2Zs/+68HzBzemwre5HXN/j592c7efHjjby2cgv7axvolZPJ2UcO4MSRBUwZ2os+3bugio1BdEKWKIyJkJysDK44bjBXHDeYz7fv5W/z1/Hm6q34laYkAU5XzfefXsqT100mv1sWXTKidzZec6i+1VhV+XjDF7z48UZeXraZnftqyclKY9rw3kw/ooBpI3pTlJfdLJmJwMi+uTYG0clYojAmCoYUdOMX54zjZ18dQ8WOfS3261dVH2DqXe/QJcNHz+xMemVn0ivny6+87Ex65WSQl+M81tN9PC8nI+TyXL/6m3V5vbtmK+XbanhxySZeXLKJ9bv2k5nmY8KQXpx4RAEnHFHA0IIcMjwW6bMxiM7HEoUxUeTz+ejRteV+/awMH7MmD6LmYB17Dtaz50Ad22oOUr59LzUH6thX2/pS5NmZafTMznCSSlMCcW7nuYlmYM+ufO3ogdz6TPNS1lufXsbSqi84urAn5x07kOkjCxjdv3tUr2xMcpNILVGQSEpLS3XRokXxboYxgDP3YM3WmsP69Uf2zW2xy6a23s+h+gb2Hapn+95atu05yI69h6jeV+sklIN11Bxw/m1MMHsO1rHnQD0H6r5MLvfNKuGXL686LEH98dJj2XuonmOKepLbJSMm/wcm8YlImaqWtvSYXVEYE2U+n4TVr5+Z7iMz3UdulwxnldWB3nMuVJXaBj+H6v3sPVjPtpqDbK85RHGvnBa7vPrkZnFscfRnhZvUEZdEISK9gCeBwcA64CJVrQ46pgh4FOiHs+vv/ar6+9i21JjIiGa/voiQlZ5GVnoa3btkMKCns4T39ppDVspqIiJeq8feDrylqiOAt9w4WD3wfVUdDUwGbhKRMTFsozFJLT8nkwcuL6Uwz0kcVspq2iteXU/nACe6tx8B3gVuCzxAVTcDm93bNSKyGhgIrIpZK41JYuF2eRnTmnglir5uIkBVN4tIH6+DRWQwcCyw0OOY64DrAIqLY7PWvzGJzkpZTSRELVGIyJs44wvB/jPM5+kGPAt8T1X3tHacqt4P3A9O1VM4r2GMMaZ1UUsUqnpqa4+JyFYR6e9eTfQHtrVyXAZOknhMVZ+LUlONMcZ4iNdg9lzgCvf2FcCLwQeIiAB/BVar6u9i2DZjjDEB4pUo7gROE5G1wGlujIgMEJFX3GOmArOAk0Vkift1Znyaa4wxnVdcBrNVdSdwSgv3bwLOdG//i9htBGaMMaYV8bqiMMYYkyQsURhjjPFkicIYY4ynlFw9VkS2A5Xt/PbewI42j0ot9p5TX2d7v2DvOVyDVLWgpQdSMlF0hIgsam2p3VRl7zn1dbb3C/aeI8m6nowxxniyRGGMMcaTJYrD3R/vBsSBvefU19neL9h7jhgbozDGGOPJriiMMcZ4skRhjDHGU6dMFCJyhoisEZFyETlsG1Zx/MF9fJmIjI9HOyMphPd8mftel4nIfBE5Oh7tjKS23nPAcRNEpEFELohl+6IhlPcsIie6i2yuFJH3Yt3GSAvhd7uHiLwkIkvd93xVPNoZKSLykIhsE5EVrTwe+c8vVe1UX0Aa8BkwFMgElgJjgo45E3gVZ1HCycDCeLc7Bu/5OCDPvT2jM7zngOPeBl4BLoh3u2Pwc+6Js51wsRv3iXe7Y/Cefwzc5d4uAHYBmfFuewfe8wnAeGBFK49H/POrM15RTATKVbVCVWuBJ3D28A50DvCoOhYAPd0NlpJVm+9ZVeerarUbLgAKY9zGSAvl5wzwbZzNsVrcPCvJhPKeZwLPqep6AFVN9vcdyntWINfd46YbTqKoj20zI0dV5+G8h9ZE/POrMyaKgcCGgLjKvS/cY5JJuO/nGpwzkmTW5nsWkYHA14HZMWxXNIXycz4CyBORd0WkTEQuj1nroiOU9/wnYDSwCVgOfFdV/bFpXlxE/PMrLvtRxFlLe1wE1wiHckwyCfn9iMhJOIliWlRbFH2hvOf/BW5T1QbnZDPphfKe04ESnP1gugIfiMgCVf002o2LklDe81eAJcDJwDDgnyLyvqruiXLb4iXin1+dMVFUAUUBcSHOmUa4xySTkN6PiBwFPAjMUGdzqWQWynsuBZ5wk0Rv4EwRqVfVF2LSwsgL9Xd7h6ruA/aJyDzgaCBZE0Uo7/kq4E51OvDLReRzYBTwYWyaGHMR//zqjF1PHwEjRGSIiGQCl+Ds4R1oLnC5Wz0wGditqptj3dAIavM9i0gx8BwwK4nPLgO1+Z5VdYiqDlbVwcAzwLeSOElAaL/bLwLHi0i6iGQDk4DVMW5nJIXyntfj7qgpIn2BkUBFTFsZWxH//Op0VxSqWi8iNwOv41RMPKSqK0XkBvfx2TgVMGcC5cB+nDOSpBXie74DyAf+7J5h12sSr7wZ4ntOKaG8Z1VdLSKvAcsAP/CgqrZYZpkMQvw5/xJ4WESW43TL3KaqSbv8uIg8DpwI9BaRKuCnQAZE7/PLlvAwxhjjqTN2PRljjAmDJQpjjDGeLFEYY4zxZInCGGOMJ0sUxhhjPFmiMClHRPa2cN8NybBchYhcKSID2vF954rImID4FyJyamRbZzorK481KUdE9qpqt3i3oz1E5F3gB6q6qIXH0lS1oZXvexh4WVWfiW4LTWdkVxSmUxCRn4nID1q4v6+IPO/uVbBURI5z779FRFa4X99z7xssIqtF5AF3X4M3RKSr+9hwEXnTfY7FIjLMvf9WEfnI3Rfg517PI85+GKXAY+LsF9FVRNaJyB0i8i/gQhG51n2+pSLyrIhku23+GnCP+33DRORh9/kQkVNE5GMRWS7OXgZZ7v3rROTnbnuXi8ioaP8cTHKyRGE6uz8A76nq0Thr/K8UkRKc2ayTcNbzv1ZEjnWPHwHcq6pjgS+A8937H3PvPxpnb4/NInK6e/xE4BigREROaO153KuBRcBlqnqMqh5wjz2oqtNU9QmcJcInuK+zGrhGVefjLNtwq/t9nzW+ORHpAjwMXKyqR+KsxnBjwPvfoarjgb8AhyVSY8AShTEn43xIoqoNqrobZ+Xc51V1n6ruxVkD63j3+M9VdYl7uwwYLCK5wEBVfd59noOquh843f36GFiMsxDdiNaex6ONTwbcHici77vLUVwGjG3j/Y10X6tx/a5HcDa+afRciG0wnVinW+vJmBB4rTl+KOB2A85S3a0dL8CvVfW+ZneKDG7leVqzL+D2w8C5qrpURK7EWfPHS1vrpze2owH7PDCtsCsK09m9hdsVIyJpItIdmAec6/b/5+BsbvR+a0/g7mtQJSLnus+T5a7M+jpwtYh0c+8fKCJ92mhPDZDr8XguTrdWBs4VRVvf9wnOVc9wN54FJP0+2Sa2LFGYVJQtIlUBX7d4HPtd4CS3K6cMGKuqi3HO3D8EFuKssPpxG685C/iOiCwD5gP9VPUNYA7O5kDLcZYy90oCuK87u3Ewu4XHf+K26Z84SaDRE8Ct7qD1sMY7VfUgznjL024b/KTOjn4mRqw81hhjjCe7ojDGGOPJEoUxxhhPliiMMcZ4skRhjDHGkyUKY4wxnixRGGOM8WSJwhhjjKf/D6fEzh3r47r1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.lineplot(data=df,\n", " marker='o',\n", " x='concentration', y='energy_atom_excess',\n", " estimator=np.min)\n", "plt.scatter(df.concentration, df.energy_atom_excess, marker='.')\n", "plt.ylim(df.energy_atom_excess.min() * 1.2, .4)\n", "plt.xlabel('Li concentration')\n", "plt.ylabel('Excess Energy [eV/atom]')" ] }, { "cell_type": "markdown", "id": "0690c44c-6c2c-4b23-888a-950eb510bffd", "metadata": {}, "source": [ "## Extra Credit\n", "\n", "1. Plot the energy against smallest nearest neighbor distance in a structure. You can get the neighbor information with the [get_neighbor method](https://pyiron-atomistics.readthedocs.io/en/latest/apidoc/pyiron_atomistics.atomistics.structure.atoms.html?highlight=Atoms.get_neighbors#pyiron_atomistics.atomistics.structure.atoms.Atoms.get_neighbors) on a structure." ] }, { "cell_type": "code", "execution_count": null, "id": "a917ba97-57c3-48ec-ae3c-bb6cf6191902", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.5" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }